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Abstract

This paper reports on a number of experiments which are designed to investigate the extent to

which current nlp resources are able to syntactically and semantically analyse biomedical text.

We address two tasks: (a) parsing a real corpus with a hand-built wide-coverage grammar,

producing both syntactic analyses and logical forms and (b) automatically computing the

interpretation of compound nouns where the head is a nominalisation (e.g. hospital arrival

means an arrival at hospital, while patient arrival means an arrival of a patient). For the

former task we demonstrate that flexible and yet constrained pre-processing techniques are

crucial to success: these enable us to use part-of-speech tags to overcome inadequate lexical

coverage, and to package up complex technical expressions prior to parsing so that they

are blocked from creating misleading amounts of syntactic complexity. We argue that the

xml-processing paradigm is ideally suited for automatically preparing the corpus for parsing.

For the latter task, we compute interpretations of the compounds by exploiting surface cues

and meaning paraphrases, which in turn are extracted from the parsed corpus. This provides

an empirical setting in which we can compare the utility of a comparatively deep parser vs.

a shallow one, exploring the trade-off between resolving attachment ambiguities on the one

hand and generating errors in the parses on the other. We demonstrate that a model of the

meaning of compound nominalisations is achievable with the aid of current broad-coverage

parsers.

1 Introduction

A growing body of research focuses on the processing, mining and extraction

of biomedical knowledge from digital repositories of scientific literature such as

MedLine (Hersh, Buckley, Leone and Hickam 1994). MedLine is a collection of

biomedical abstracts maintained and supported by the U.S. National Library of
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Medicine1, which contains approximately 10 million abstracts, and approximately

40,000 abstracts are added each month. Although MedLine is a valuable resource

that allows scientists to access and retrieve articles of interest, most of the information

it contains is not represented in a structured format (e.g. in the form of a database),

but instead in the form of natural language text. The rapid increase of novel

information being added to MedLine means that hand-constructed databases and

ontologies, despite their usefulness, cannot be considered exhaustive or complete.

And the information available in texts like MedLine must be retrieved using

automatic methods that not only access and process biomedical text efficiently

but also are able to discover novel facts about medical data.

The use of computational linguistic techniques for automatically extracting inform-

ation from biomedical texts (in particular from MedLine) has received increasing

attention lately (Andrade and Valencia 1998; Blaschke, Andrade, Ouzounis and

Valencia 1999; Pustejovsky, Casta Cohran, Kotecki and Morrell 2001). Much of

the reported work focuses either on information retrieval (Proux, Rechenmann and

Julliard 2000; Fukuda, Tamura, Tsunoda and Takagi 1998; Iliopoulos, Enright

and Ouzounis 2001), or on the detection and extraction of relations, for example

between proteins and cell-types or between proteins and associated diseases (Rind-

fleisch, Rayan and Lawrence 2000; Blaschke et al. 1999; Sekimizu, Park and Tsujii

1998; Craven and Kumlien 1999; Pustejovsky, Casta Cochran and Kotecki 2002;

Humphreys, Demetriou and Gaizauskas 2000; Rosario and Hearst 2001; Yakushiji,

Tateisi, Yusuke and Tsujii 2001).

Processing medical abstracts is challenging from the perspective of both syntax

and semantics. Ambiguities at all levels of linguistic processing are in abundance

and are hard to resolve; for example, coordination, ellipsis and complex nominals

(which are used as meaning compression devices) are all commonplace and typically

problematic for state-of-the art parsers. Furthermore, over 46% of sentences feature

one or more of the following: complex equations (e.g. chi2 = 13.1, p less than

0.001), units of measurement (e.g. 10 mIU/ml), numbers (e.g. 9.3 +/− 0.7 ) and

drug/chemical/substance names or formulae (e.g. alpha,beta-methylene ATP). If left

unchecked, parsing such expressions engenders unnecessary syntactic complexity, and

this militates against automatic knowledge discovery. Robust semantic interpretation

of medical text poses additional challenges. While domain-specific knowledge bases

like the umls metathesaurus (Humphreys, Lindberg, Schoolman and Barnett 1998)

are useful for certain interpretation tasks, such resources are not exhaustive. Some

form of learning is therefore necessary, to complement the gaps and idiosyncrasies

in the available resources.

In this paper, we report a number of experiments which are designed to investigate

whether it is possible to use current state of the art nlp resources to syntactically

and semantically analyse MedLine abstracts. Because of the syntactic and semantic

complexity of medical text, many current information extraction systems employ

tools (e.g. parsers, named-entity recognisers) or ontologies that have been specifically

1 http://www.nlm.nih.gov/
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developed for the biomedical domain (Andrade and Valencia 1998; Pustejovsky et al.

2001, 2002). The systems described in Yakushi et al. (2001) and Proux et al. (2000)

contain domain specific components for named entities such as genes and proteins

but they reuse general purpose parsers which are not specifically tuned to the domain.

Our first suite of experiments follows this methodology in investigating whether it is

possible to use state of the art nlp resources which aren’t specifically developed for

the biomedical domain to syntactically and semantically analyse MedLine abstracts.

We first describe work on parsing these abstracts using a hand-crafted grammar

which provides both syntactic and semantic analyses. Such grammars typically have

insufficient coverage over real data to be of use in practical applications; this is

largely due to inadequate lexical coverage. We address this problem via a suite

of nlp tools which pre-process the data prior to parsing, and in particular we

exploit part-of-speech (pos) tag information (rather than domain-specific lexicons)

to overcome the lack of lexical coverage within the grammar.

Our second suite of experiments investigates the extent to which state-of-the-art

nlp technology can be used to perform the task of interpreting compound nouns

where the head noun is a deverbal head. This involves computing the semantic

relation between the modifier and the head noun; for example, we aim to predict

that in patient arrival the patient is the subject or agent of the arriving event,

whereas in hospital arrival the hospital is the destination of the arrival event.

We chose this task for several reasons. First, compound nominalisations are

highly productive in the medical text genre and are frequently used as devices for

compressing meaning (Marsh 1984). In a random sample of 50 sentences, 72%

contained noun compounds, yielding an average of 1.4 compounds per sentence;

35% of these were compound nominalisations, i.e. on average one compound

nominalisation for every two sentences. The high degree of productivity of compound

nominalisations means that one cannot assume that a given compound is to be

found in existing on-line domain knowledge sources, such as the umls lexicon or

metathesaurus. Even if a given lexicon were to include linguistic (both syntactic and

semantic) information about various classes of productive compounds (e.g. that a

noun denoting a human can be combined with a nominalisation of a verb that

takes animate subjects to form a compound where the semantic relation between the

modifier and the head is that the modifier is the subject of the event associated with

the head), one would still need to predict which token compounds that are present

in the corpus but absent from the lexicon belong to which class. Either way, there

is a need to tackle the task of compound noun interpretation using corpus-based

methods.

The second reason for choosing the task of interpreting compound nominalisations

is that it involves acquiring semantic information that is linguistically implicit (cf. the

semantic relations mentioned above, which are required for specifying the meanings

of hospital arrival and patient arrival). Indeed, interpreting compound nouns is

often analysed in the linguistics literature in terms of (impractical) general purpose

reasoning with pragmatic information such as real world knowledge (e.g. Hobbs,

Stickel, Appelt and Martin 1993). Even if a hand-crafted grammar achieved perfect

precision and coverage it wouldn’t provide a complete description of the content that



30 C. Grover, A. Lascarides and M. Lapata

is conveyed in the corpus. Performing the task of compound noun interpretation

can therefore be viewed as a complementary task to our first experiments above, of

providing semantic analyses of sentences in the corpus from a hand-crafted grammar.

And we aim to show that in spite of the relative difficulty of the compound noun

interpretation task – as evidenced by the traditional role of pragmatics – existing

nlp technologies are sufficient for performing semantic interpretation automatically.

We utilise linguistically-principled assumptions in obtaining features to be used in a

machine learning paradigm. We exploit meaning paraphrases and surface syntactic

cues in the corpus to estimate the relation of a compound head and its modifier when

the former is a nominalisation; and we aim to show that the syntactic information

required can be obtained from the medical abstracts automatically through parsing.

More specifically, our model of compound noun interpretation involves estimating

the most likely grammatical relation between a noun and verb. For example, on the

basis of information gathered from the corpus (via parsing) we can infer that patient

is more likely to be the subject of the verb arrive than part of its at-pp complement,

the difference being the likelihood of seeing the patient arrived vs. arrive at the

patient in the corpus. We needed to utilise a parser so as to parse the corpus and

acquire these grammatical relations automatically. This interpretation task therefore

gave us the opportunity to compare two parsers: Abney’s Cass partial parser (Abney

1996) and Carroll and Briscoe’s Tag Sequence Grammar (tsg) parser (Carroll and

Briscoe 2002).2 There is a clear trade-off during parsing between on the one hand

resolving syntactic ambiguities so as to obtain more complete syntactic information

but potentially generating errors in the process, and on the other hand leaving

such ambiguities unresolved so that the parse is more partial, but less error prone.

Abney’s Cass parser on average makes fewer decisions among syntactic attachment

ambiguities than the tsg parser, and our goal was to investigate the effects of these

different trade-offs when performing interpretation tasks on the corpus. We were

particularly interested in how these trade-offs were affected when other linguistic

resources were used during training, such as taxonomic information. We not only

compare the effect of syntactic information gathered from different types of parsers

but we also experiment with two different types of taxonomies: the umls meta-

thesaurus (Humphreys et al. 1998), which is a specialised knowledge base for the

medical domain and WordNet (Miller, Beckwith, Fellbaum, Gross and Miller 1990),

a general-purpose lexical taxonomy. We aim to demonstrate that in spite of the

challenges in processing biomedical text, one can acquire automatically models of a

relatively difficult interpretation task by exploiting current nlp technology.

The rest of this paper is organised as follows: section 2 gives a brief overview

of MedLine abstracts and discusses some of the challenges that biomedical texts

pose for nlp technology; section 3 describes how our corpus of medical abstracts

was pre-processed using several xml-based techniques and section 3.3 assesses their

2 One reason why we did not use the hand-crafted grammar from the first experiment –
namely the Alvey Natural Language Tools (anlt) grammar– is that it lacks the robustness
required for this task (see section 3.3). The tsg is a relatively shallow grammar compared
to the anlt grammar, but deeper than Abney’s Cass parser.
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.I 309357

.U

91188323

.S

Spine 9107; 16(2):185-9

.M

Adult; Bone Screws; Case Report; Female; Fracture Fixation, Internal; Fractures,

Stress/*CO/SU; Human; Lumbar Vertebrae/*IN; Male; Middle Age; Nomenclature;

Spondylolysis/*CO; Support, Non-U.S. Gov’t.

.T

Stress fracture of the lumbar pedicle. Case reports of “pediculolysis” and review of the

literature.

.P

JOURNAL ARTICLE; REVIEW; REVIEW OF REPORTED CASES.

.W

Cases of lumbar pedicle stress fractures are described and the term “pediculolysis”

introduced. The condition may be bilateral or, more commonly, may occur in association

with contralateral spondylolysis. A method of direct repair with pedicle screw fixation is

described.

.A

Gunzburg R; Fraser RD.

Fig. 1. An example from the OHSUMED Corpus.

impact on parsing. Sections 4–6 report our experiments on the interpretation of

nominalisations while comparing the effect of different parsers and taxonomies on

the task.

2 The MedLine Abstracts

The work reported here uses the ohsumed corpus of MedLine abstracts (Hersh

et al. 1994) which contains 348,566 references from 270 journals taken from the

years 1987–1991. Each reference in the corpus has a number of attributes including

the abstract itself and is coded up in the way illustrated in Figure 1.

The abstracts are contained in the .W field though many references do not contain

an abstract. The total number of abstracts in the corpus is 233,443 while the total

number of words in the abstracts is 38,708,745 – thus the average length of an

abstract is 166 words. The abstracts contain approximately 1,691,383 sentences with

an average length of 22.9 words. (Our notion of ‘word’ here is defined by the output

of the tokeniser described in section 3.)

The language in the corpus is often highly technical and contains a large number

of instances of complex equations, numerical expressions, chemical formulae, etc.,

as illustrated in the following examples.

1. Saved blood had a higher haemoglobin concentration (17.3 v. 13.1 g dl-1;

P less than 0.001), a higher 2,3-diphosphoglycerate concentration (5.3 v. 1.1

mmol litre-1; P less than 0.00001), higher white cell count (17.1 X 10(9) litre-1

v. 4.1; P less than 0.00001), higher pH (7.5 v. 6.6; P less than 0.00001) and
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a more physiological potassium concentration (5.4 v. 8.8 mmol litre-1; P less

than 0.00001) than donor blood.

2. The uptake of 3.44% ID in rat heart at 1 min postinjection for [99mTc]CDO-

MeB versus 3.03% for 201TI indicates high extraction of [99mTc]CDO-MeB

by the myocardium.

3. During the first 24 hours after addition of rTNF, there was a decrease in

intracellular ATP content in the CEM/V line but not in the CEM line.

4. TSH and ATP were weaker agonists compared to CC, since maximal doses of

TSH (100-500 mU/ml) and ATP (100-500 microM) increased [Ca2+]i by 40-

70% over basal levels, compared to a 2- to 4-fold increase in [Ca2+] induced by

maximal doses of CC (10-50 microM). The TSH-induced increase in [Ca2+]i

was transient, returning to basal levels within 1-2 min after application of the

agonist.

5. When N-formyl-L-methionyl-L-leucyl-L-phenylalanine (fMLP) was injected

intravenously at 10 micrograms.kg-1, lung RBC content dropped by 14.7 +/-

1.8% (SE; n = 10), indicating a reduced lung blood volume, ALBev rose to

15.0 ± 3.2% of the initial albumin vascular content, and the circulating PMN

were sequestered by 9.2 ± 1.7%.

6. Technetium-99m-CDO-MeB [Bis[1,2-cyclohexanedione-dioximato(1-)-O]-[1,2-

cyclohexanedione dioximato(2-)-O]methyl-borato (2-)-N,N’,N”,N”’,N””,N””’)-

chlorotechnetium) belongs to a family of compounds generally known as

boronic acid adducts of technetium dioxime complexes (BATOs).

The sentences in (1)–(6) are fairly extreme examples of technical language and

the sentences in the abstract in Figure 1 are perhaps more typical. However, the

language does contain significantly high proportions of technical expressions as well

as high numbers of compounds. To gain a feel for the extent of the problem, we

chose 50 sentences at random from the middle part of the corpus and hand-classified

substrings within them.

The notion of technical expression is not easily definable and thus it is hard to

quantify the frequency of such strings. However, the sample of 50 sentences does

give some sort of indication. It contained: 23 upper-case alphabetic abbreviation-like

words (FSH, MCGN); 7 mixed case ones (mRNA); 16 multi-word expressions con-

taining abbreviations (IFN gamma); 12 formulaic expressions containing numeric

characters and units of measurement (less than 10 mIU/ml); and 20 other numerical

expressions including dates, durations and percentages.

The notion of compound has a more clear-cut definition. As explained in section 1,

compounding as a linguistic compression strategy is pervasive and when we counted

the numbers of noun compounds in the sample of 50 sentences, we found 70 examples

(average of 1.4 per sentence). This count is just for true noun compounds but there

are other kinds of compound-like complex nominals which occur just as frequently.

For example, there are many examples of sequences composed of adjectives and

nouns which cannot easily be categorised as straightforward adjectival modification

of a nominal head: (7) shows some true noun compounds from our sample of 50

sentences, while (8) shows some compound-like sequences from the same sample,
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which contain adjectives as well as nouns (adjectives italicised). The bracketings

indicate the structure of the complex nominal and demonstrate that the adjective

forms part of the compound and is not simply an adjunct of the entire nominal.

(7) a. amino acid sequence

b. muscle fibers

c. blood pressure

d. thyrotropin level

(8) a. ((paediatric oncology) clinic)

b. (((human HL-60 myeloid leukemia) cell) line)

c. (lung (inflammatory response))

d. (((fresh gas) flow) rates)

In section 6 we describe our method of interpreting noun-noun compounds where

the head noun is a deverbal nominalisation. This kind of compound occurs very

frequently and in the sample of 50 sentences, 25 of the compounds (approx. 35%,

i.e. on average one every two sentences) were headed by a deverbal nominalisation.

Some of these are shown in (9):

(9) a. drug abusers

b. sodium excretion

c. lipopolysaccharide synthesis

d. amino acid deprivation

e. ciprofloxacin resistance

f. digoxin withdrawal

3 Pre-processing the MedLine Abstracts

In this section we describe the various stages of pre-processing that we have

performed in preparation for parsing. By pre-processing we mean identification

of word tokens and sentence boundaries and other lower-level processing tasks such

as part-of-speech (pos) tagging and lemmatisation. These initial stages of processing

form the foundation of our work with MedLine abstracts and we build on them for

a variety of higher level tasks. In section 3.3 we describe a processing pipeline where

initial tokenisation is succeeded by a level of recognition of technical entities such

as drug names, formulae, etc. in preparation for full deep parsing, while in Section 4

we describe tokenisations to identify compounds and to mark up verbal stems on

deverbal nominalisations.

Our processing paradigm is xml-based. As a mark-up language for nlp tasks,

xml is expressive and flexible yet constrainable. Furthermore, xml-based tools for

nlp applications lend themselves to a modular, pipelined approach to processing

whereby linguistic knowledge is computed and added as xml annotations in an

incremental fashion. In our work with the ohsumed corpus, the key components

of our pipelines are the programs distributed with the lt ttt and lt xml toolsets

(Grover, Matheson, Mikheev and Moens 2000; Thompson, Tobin, McKelvie and

Brew 1997). We have also successfully integrated non-xml public-domain tools into

our pipelines and incorporated their output into the xml mark-up using the lt xml
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program xmlperl (McKelvie 2000). Note that our pipeline architecture is similar to

the architecture embodied in the gate system (Cunningham, Maynard, Bontcheva

and Tablan 2002) in that disparate nlp processes can be plugged together to perform

successive layers of processing. The major difference is that xml is fundamental to

our approach whereas gate is built around the tipster architecture.3

The core program in our pipelines is the lt ttt program fsgmatch, a general

purpose transducer which processes an xml input stream and rewrites it using

rules provided in a hand-written grammar file, where the rewrite usually takes the

form of the addition of xml mark-up. Typically, fsgmatch rules specify patterns

over sequences of xml elements and use a regular expression language to identify

patterns inside the character strings (pcdata) which are the content of elements. For

example, the following rule for decimals such as “.25” builds a word (a w element)

out of two character sequences (s elements). The rule is searching, first for an

s element which contains the string “.” as its content, and second for an s element

which has been identified as a cardinal (c=‘cd’, e.g. any sequence of digits). When

these two character sequences are found, they are wrapped in a w element with the

attribute c=‘cd’ (targ sg).

(10) <rule name=“decimal” targ sg=“w [ c=‘cd’ ] ”>

<rel match=“s/# ∼ ∧[ \ . ]$”></rel >

<rel match=“s [ c=‘cd’ ] ”></rel>

</rule>

3.1 Word level processing

The first step in processing ohsumed is a conversion from its original format to

an appropriate xml format. We do this by using a Perl program to wrap an initial

text element around the input and then applying an fsgmatch grammar which

converts the original delimiters into xml elements. The resulting structure of a

record element can be seen in Figure 2.

Each step in a pipeline can be thought of as a distinct module so that pipelines can

be configured to different tasks. An early task is the identification of word tokens

within abstracts, which we accomplish using a two-stage process. First, sequences of

characters are bundled into s (sequence) elements using fsgmatch. For each class of

character a sequence of one or more instances is identified and the type is recorded as

the value of the attribute c (uca=upper case alphabetic, lca=lower case alphabetic,

ws=white space etc.).

Consider the example in (11). Here, all characters including white space and

newline are contained in s elements which become building blocks for the next call

to fsgmatch where words are identified. An alternative approach would find words

in a single step but our two-step method provides a cleaner set of word-level rules

which are more easily modified and tailored to different purposes; modifiability

is critical since the definition of what is a word can differ from one subsequent

3 See http://www.itl.nist.gov/iaui/894.02/related projects/tipster/ for details.
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<RECORD>

<ID>309357</ID>

<MEDLINE-ID>91188323</MEDLINE-ID>

<SOURCE>Spine 9107; 16(2):185-9</SOURCE>

<MESH>

Adult; Bone Screws; Case Report; Female; Fracture Fixation, Internal; Fractures,

Stress/*CO/SU; Human; Lumbar Vertebrae/*IN; Male; Middle Age; Nomenclature;

Spondylolysis/*CO; Support, Non-U.S. Gov’t.

</MESH>

<TITLE>

Stress fracture of the lumbar pedicle. Case reports of “pediculolysis” and review of the

literature.

</TITLE>

<PTYPE>

JOURNAL ARTICLE; REVIEW; REVIEW OF REPORTED CASES.

</PTYPE>

<ABSTRACT>

<SENTENCE><W P=‘NNS’ LM=‘case’>Cases</W> <W P=‘IN’>of</W>

<W P=‘JJ’ LM=‘lumbar’>lumbar</W> <W P=‘NN’ LM=‘pedicle’>pedicle</W>

<W P=‘NN’ LM=‘stress’>stress</W> <W P=‘NNS’ LM=‘fracture’>fractures</W>

<W P=‘VBP’ LM=‘be’>are</W> <W P=‘VBN’ LM=‘describe’>described</W>

<W P=‘CC’>and</W> <W P=‘DT’>the</W> <W P=‘NN’ LM=‘term’>term</W>

<W P=‘”’>“</W><W P=‘NN’ LM=‘pediculolysis’>pediculolysis</W><W P=‘”’>”</W>

<W P=‘VBD’ LM=‘introduce’>introduced</W><W P=‘.’>.</W></SENTENCE>

<SENTENCE><W P=‘DT’>The</W><W P=‘NN’ LM=‘condition’>condition</W>

<W P=‘MD’ LM=‘may’>may</W> <W P=‘VB’ LM=‘be’>be</W>

<W P=‘JJ’>bilateral</W><W P=‘CC’>or</W><W P=‘,’>,</W>

<W P=‘RBR’>more</W> <W P=‘RB’>commonly</W><W P=‘,’>,</W>

<W P=‘MD’ LM=‘may’>may</W> <W P=‘VB’ LM=‘occur’>occur</W>

<W P=‘IN’>in</W> <W P=‘NN’ LM=‘association’>association</W>

<W P=‘IN’>with</W> <W P=‘JJ’>contralateral</W>

<W P=‘NN’ LM=‘spondylolysis’>spondylolysis</W><W P=‘.’>.</W></SENTENCE>

<SENTENCE><W P=‘DT’>A</W> <W P=‘NN’ LM=‘method’>method</W>

<W P=‘IN’>of</W> <W P=‘JJ’>direct</W>

<W P=‘NN’ LM=‘repair’>repair</W> <W P=‘IN’>with</W> <W P=‘NN’

LM=‘pedicle’>pedicle</W> <W P=‘NN’ LM=‘screw’>screw</W>

<W P=‘NN’ LM=‘fixation’>fixation</W> <W P=‘VBZ’ LM=‘be’>is</W>

<W P=‘VBN’ LM=‘describe’>described</W> <W P=‘.’>.</W></SENTENCE>

</ABSTRACT>

<AUTHOR>

Gunzburg R; Fraser RD. </AUTHOR>

</RECORD>

Fig. 2. A sample from the XML-marked-up OHSUMED Corpus.

processing step to another. Once the word-level grammar has applied, the s mark-up

can be discarded, as in Figure 2.

(11) Arterial PaO2 as measured by

<S C=‘UCA’>A</S><S C=‘LCA’>rterial</S><S C=‘WS’> </S>

<S C=‘UCA’>P</S><S C=‘LCA’>a</S><S C=‘UCA’>O</S>

<S C=‘CD’>2</S><S C=‘WS’> </S><S C=‘LCA’>as</S>
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<S C=‘WS’> </S><S C=‘LCA’>measured</S>

<S C=‘WS’> </S><S C=‘LCA’>by</S>

The lt ttt toolset includes a program called ltpos which is a combined sentence

boundary disambiguator and part-of-speech (pos) tagger (Mikheev 1997). The point

at which we use this program depends on the particular task: for the deep parsing

described in section 3.3 it is used early on, immediately after word identification,

to disambiguate sentence boundaries and then a second call is made late in the

pipeline to perform pos tagging after all the higher-level tokenisation is complete.

In the task described in section 5, ltpos is used to provide the tags needed by the

Cass chunker and is applied soon after word-level tokenisation has been completed.

Note that the tagset used by ltpos is the Penn Treebank tagset (Marcus, Santorini

and Marcinkiewicz 1993).

In the processing so far, each module has used one of the lt ttt or lt xml

programs which are sensitive to xml structure. There are, however, a large number

of tools available from the nlp community which could profitably be used but which

are not xml-aware. We have integrated some of these tools into our pipelines using

the lt xml program xmlperl. This is a program which makes underlying use of an

xml parser so that rules defined in a rule file can be directed at particular parts of the

xml tree-structure. The actions in the rules are defined using the full capabilities of

Perl. This gives the potential for a much wider range of transformations of the input

than fsgmatch allows and, in particular, we use Perl’s stream-handling capabilities

to pass the content of xml elements out to a non-xml program, receive the result

back and encode it back in the xml mark-up. One example of this method is our

integration of Minnen, Carroll and Pearce’s (2000) morpha lemmatiser. Here, the

pcdata content of verbal and nominal w elements is passed to the lemmatiser and

the lemma that is returned is encoded as the value of the attribute lm. A sample of

the output from the pipeline is shown in Figure 2.

3.2 Tokenisation above the word level

A major strength of our xml-based pipeline approach is the modularity it affords

and the way in which layers of processing can be gradually applied in order to add

or modify mark-up by increments. It may seem that this pipeline approach does not

allow ambiguities to be encoded and that it therefore encourages early commitment.

However, most kinds of ambiguity can easily be represented in xml through the

choice of an underspecified representation and apparent cases of structural ambiguity

can also often be represented in a well-designed annotation scheme. Where structural

ambiguity can really not be avoided, standoff mark-up (Ide, Bonhomme and Romary

2000) can provide a solution.

For many nlp activities, pre-processing often seems to be limited to word-level

tokenisation and tagging, but our paradigm offers the possibility of adding further

layers of processing prior to the end application. In section 3.3 we describe how

extensive use of further pre-processing techniques can make a significant contribution

to the use of a hand-coded syntactic and semantic grammar for deep parsing.
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In section 5 we describe the use of two shallow parsing methods, and here too, it

proved useful to perform some layers of tokenisation on top of the word tokenisation

in order to package up a number of pervasive types of sequences such as numerical

expressions, and also to deal with issues such as hyphenation and parentheses. In

the remainder of this section we describe these extra layers of processing.

To deal with a wide-range of numerical expressions, we re-used a general purpose

fsgmatch grammar which identifies and marks up multi-word numbers:

(12) <W C=‘CD’>Fifty-five</W>

<W C=‘CD’>–0.552</W>

<W C=‘CD’>25 million</W>

<W C=‘CD’>One hundred and forty six</W>

<W C=‘CD’>1.5 million</W>

A second above-word-level layer of tokenisation that we performed for the deep

and shallow parsing tasks concerns hyphenation. In the initial tokenisation into

words, hyphenated words were split into word and hyphen tokens, in order that

later processes could determine which should be treated as single word tokens and

which should be left split. In the fsgmatch grammar used here, hyphenated strings

were wrapped as one word if the subwords were entirely alphabetic. In addition,

hyphenated strings representing durations were treated as single words:

(13) <W C=‘HYW’>long-term</W>

<W C=‘HYW’>anti-HBc-positive</W>

<W C=‘HYW’>30-min</W>

<W C=‘HYW’>5-hr</W>

A final step that we took at this stage was to remove parenthesised material from

our input to both the deep and shallow parsing tasks. We did this by marking up

parentheticals using an fsgmatch grammar and then by removing these elements

in their entirety using an xmlperl rule file. Thus our pipeline would remove the

parenthetical material in the following examples:

(14) a. Atrial natriuretic peptide (ANP) levels were measured. . . . .

b. HCl was infused at a constant rate of 25 mmol/h until the bicarbonate

concentration decreased less than 26 mmol/L, or until the pH decreased

less than 7.35 (initial pH greater than 7.40). . . .

c. PaCO2 during precordial compression was highly correlated with PetCO2

(r = .89). . . .

d. Five developed pneumonitis (fatal in three);

The assumption behind the removal of parentheticals is that their contents are likely

to be less central than unparenthesised material. In some cases, this assumption will

turn out to be incorrect but in the context of the experiments we are reporting here,

we felt that this was a simplifying step which would not impact significantly on the

task at hand.
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Fig. 3. Pipeline architecture.

The modular structure of the pipeline can be represented graphically as shown in

Figure 3.

3.3 Robust deep parsing

In the first of our parsing experiments with ohsumed, we have been attempting

to improve the coverage of a hand-crafted, linguistically motivated grammar which

provides full-syntactic analysis paired with logical forms. The grammar and parsing

system we use is the wide-coverage grammar, morphological analyser and lexicon

provided by the Alvey Natural Language Tools (anlt) system (Carroll et al. 1991;

Grover et al. 1993). Our aim was to increase coverage up to a reasonable level

so that it can be of use to practical applications. The processing involved in this

experiment is described in more detail in Grover and Lascarides (2001).

The anlt grammar is a feature-based unification grammar based on the gpsg

formalism (Gazdar, Klein, Pullum and Sag 1985). In this framework, lexical entries

carry a significant amount of information including subcategorisation information.

Thus the practical parse success of the grammar is significantly dependent on the

quality of the lexicon. The anlt grammar is distributed with a large lexicon which

was derived semi-automatically from a machine-readable dictionary (Carroll and

Grover 1988) and, while this provides a core of commonly-occurring lexical entries,

there remains a significant problem of inadequate lexical coverage. If we try to parse

ohsumed sentences using the anlt lexicon and no other resources, we achieve very

poor results (2% coverage) because most of the medical domain words are simply

not in the lexicon and there is no robustness strategy built into anlt. Rather than

pursue the labour-intensive course of augmenting the lexicon with domain-specific

lexical resources, we have developed a solution which does not require that new

lexicons be derived for each new domain type and which has robustness built into the

strategy. Furthermore, this solution does not preclude the use of specialist lexical

resources such as umls if these can be used to achieve further improvements in

performance.
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Our approach relies on the sophisticated xml-based tokenisation and pos tagging

described in the previous section and it builds on this by combining pos tag

information with the existing anlt lexical resources. We preserve pos tag information

for content words (nouns, verbs, adjectives, adverbs) since this is usually reliable

and informative and we dispose of pos tags for function words (complementizers,

determiners, particles, conjunctions, auxiliaries, pronouns, etc.) since the anlt hand-

written entries for these are more reliable and are tuned to the needs of the grammar.

Furthermore, unknown words are far more likely to be content words, so knowledge

of the pos tag will most often be needed for content words.

Having retained content word tags, we use them during lexical look-up in one of

two ways. If the word exists in the lexicon with the same basic category as the pos

tag then the pos tag plays a disambiguating role, filtering out entries for the word

with different categories. If, on the other hand, the word is not in the lexicon or if

it is not in the lexicon with the relevant category, then a basic underspecified entry

for the pos tag is used as the lexical entry for the word, thereby allowing the parse

to proceed. For example, if the following partially tagged sentence is input to the

parser, it is successfully parsed.

(15) We studied VBD the value NN of transcutaneous JJ carbon NN

dioxide NN monitoring NN during transport NN

Without the tags the parse would fail since the word transcutaneous is not in the

anlt lexicon. Furthermore, monitoring is present in the lexicon but as a verb and not

as a noun. For both these words, ordinary lexical look-up fails and the entries for the

tags have to be used instead. Note that the case of monitoring would be problematic

for a strategy where tagging is used only in case lexical look-up fails, since here it

is incomplete rather than failed. The implementation of our word-tag pair look-up

method is specific to the anlt system and uses its morphological analysis component

to treat tags as a novel kind of affix (see Grover and Lascarides (2001) for further

details).

Another impediment to parse coverage is the prevalence of technical expressions

and formulae in biomedical and other technical language, as discussed in the

previous sections. For example, the sentence (16) has a straightforward overall

syntactic structure but the anlt grammar does not contain specialist rules for

handling expressions such as 5.0+/-0.4 grams tension and thus the parse would fail.

(16) Control tissues displayed a reproducible response to bethanechol

stimulation at different calcium concentrations with an ED50 of

0.4 mM calcium and a peak response of 5.0+/-0.4 grams tension.

Our response to issues such as these is to place a further layer of processing in

between the output of the initial tokenisation pipeline in Figure 2 and the input

to the parser. Since the anlt system is not xml-based, we already use xmlperl

to convert sentences to the anlt input format of one sentence per line with tags

appended to words using an underscore. We can add a number of other processes

at this point to implement a strategy of using fsgmatch grammars to package up

technical expressions so as to render them innocuous to the parser. Thus all of the
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Table 1. Parse results

Version 1 Version 2 Version 3

Parses 4 (2%) 32 (16%) 79 (39.5%)

following words have been identified using fsgmatch rules and can be passed to the

parser as unanalysable units. The classification of these examples as nouns reflects

a hypothesis that they can slot into the correct parse as noun phrases but there is

room for experimentation since the conversion to parser input format can rewrite

the tag in any way.

(17) <W P=‘NN’>P less than 0.001</W>

<W P=‘NN’>166 +/- 77 mg/dl</W>

<W P=‘NN’>2 to 5 cc/day</W>

<W P=‘NN’>9.1 v. 5.1 ml</W>

<W P=‘NN’>2.5 mg i.v.</W>

In addition to these kinds of examples, we also package up other less technical

expressions such as common multi-word words and spelled out numbers (the

expressions in the right-hand-side column are in the anlt input format, as converted

automatically from the expressions on the left):

(18) <W P=‘CD’>thirty-five</W> thirty-five CD

<W P=‘CD’>Twenty one</W> Twenty∼one CD

<W P=‘CD’>176</W> 176 CD

<W P=‘IN’>In order to</W> In∼order∼to IN

<W P=‘JJ’>in vitro</W> in∼vitro JJ

To measure the effectiveness of our attempts to improve coverage, we conducted

an experiment where we parsed 200 sentences taken at random from ohsumed (see

Grover and Lascarides (2001)). We processed the sentences in three different ways

and gathered parse success rates for each of the three methods. Version 1 established

a no-intervention baseline by using the pipeline in Figure 3 to identify words and

sentences but otherwise discarding all other mark-up. Version 2 addressed the

lexical robustness issue by retaining pos tags to be used by the grammar in the way

outlined above. Version 3 applied the full set of preprocessing techniques including

the packaging-up of formulaic and other technical expressions. The parse results for

these runs are shown in Table 1.

The baseline of 2% demonstrates that the problem is intractable without some

kind of intervention. When we address the issue of lexical inadequacies by utilising

pos tag information in Version 2 there is a highly significant increase in performance,

although the 16% result is still sufficiently low to demonstrate that there are other

factors apart from lexical gaps which impede parsing. The steps we have taken in

Version 3 to handle technical expressions lead to another very significant increase

in performance. The final figure of 39.5% is still low but it demonstrates that our

approach has made significant inroads into the problem.
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Although we have achieved an encouraging overall improvement in performance,

the total of 39.5% for Version 3 is not a precise reflection of accuracy of the parser.

To determine accuracy, we hand-examined the parser output for the 79 sentences

that were parsed and recorded whether or not the correct parse was among the

parses found. Of these 79 sentences, 61 (77.2%) were parsed correctly while 18

(22.8%) were not, giving a total accuracy measure of 30.5% for Version 3. While

this figure is rather low for a practical application, it is worth reiterating that this

still means that nearly one in three sentences are not only correctly parsed but they

are also assigned a logical form. We are confident that further development cycles

(see below) will achieve an improvement in performance which will lead to a useful

semantic analysis of a significant proportion of the corpus. Furthermore, in the case

of the 18 sentences which were parsed incorrectly, it is important to note that the

wrong parses may sometimes be capable of yielding useful semantic information.

For example, the grammar’s compounding rules do not yet include the possibility of

coordinations within compounds so that the NP the MS and direct blood pressure

methods can only be wrongly parsed as a coordination of two NPs. However, the

rest of the sentence in which the NP occurs is correctly parsed.

An analysis of some of the sentences which failed to parse shows that three

main factors contribute to parse failure: tagging errors, tokenisation errors and

lack of syntactic coverage of the grammar. All three of these problems can

be addressed through further development cycles. The tokenisation of technical

expressions was performed entirely by means of hand-coded rulesets and was

by no means comprehensive. Future improvements to this component, perhaps

incorporating machine-learning techniques to identify technical expressions and

named entities, would bring us a long way towards realising our goal of performing

full parsing of the majority of sentences in the corpus. It should also be noted that

the results reported here were achieved without altering the grammar, except for

the adaptation of the word grammar to handle word tag pairs. It is to be expected

that the grammar does lack coverage in certain cases and updates to it would also

improve performance. Once coverage reaches an acceptable level, the next step would

be to rank the parses using a parse selection method, such as Briscoe and Carroll’s

(1993) statistical lr-parsing method.

In the following we focus on the interpretation of the nominalisations. We first

discuss the linguistic properties of nominalisations and previous work relating to

the automatic interpretation of compound nouns. We then describe our experiments

on the biomedical domain using a machine learning paradigm which is based

on data obtained through parsing and conceptual information available both

in general purpose taxonomies and in taxonomies specialised for the medical

domain.

4 Nominalisations

The automatic interpretation of compound nouns has been a long-standing unsolved

problem for nlp. A considerable amount of effort has gone into specifying the set of

semantic relations that hold between a compound head and its modifier (Levi 1978;
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Warren 1978; Finin 1980; Isabelle 1984). Levi (1978), for example, distinguishes two

types of compound nouns: (a) compounds consisting of two nouns which are related

by one of nine predicates (e.g. cause relates onion tears, for relates pet spray, see

the examples in (19)) and (b) nominalisations, which are compounds where the head

noun is derived from a verb and its modifier is interpreted as an argument to the

verb (see the examples in (20)–(21)).

(19) a. onion tears cause

b. vegetable soup have

c. music box make

d. steam iron use

e. pine tree be

f. night flight in

g. pet spray for

h. peanut butter from

i. abortion problem about

(20) a. cell survival subj

b. breast conservation obj

c. hospital readmissions to

d. dissolution treatment with

e. hospital discharge from

(21) a. airway opening

b. policy implications

c. knee alignment

Nominalisations are abundant in the biomedical domain: 35% of the compounds

found in the MedLine abstracts are nominalisations. The compound modifier can

be the subject or object of the nominalised head (see examples (20a,b)) and in some

cases the underlying verb subcategorises for a pp-object as shown in (20c)–(20e). The

interpretation of nominalisations poses several challenges for current nlp systems.

The relations between a head and its modifier are not readily available in the corpus

and thus they must somehow be retrieved and approximated. The phenomenon is

quite productive and therefore one cannot solely rely on resources that hand-code

semantic information. Finally, nominalisations can be multiply ambiguous and most

of the cases processed by a hypothetical semantic tagger would manifest some

degree of ambiguity. Consider the examples in (21). Out of context, airway opening

can mean that the airway is opening something (subject interpretation) or that

something/someone is opening the airway (object interpretation). Similarly, policy

implications can mean the policy implies something or that something is implied

for the policy, and knee alignment can mean that the knee aligns with something or

that something aligns with the knee.

Most approaches that have previously addressed the interpretation of compounds

require large amounts of hand-crafted knowledge and place emphasis on recovering

relations other than nominalisations. Most symbolic approaches are limited to a

specific domain due to the large effort involved in hand-coding semantic information

and are distinguished in two main types: concept-based and rule-based. Under the
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concept-based approach each noun is associated with a concept and various slots.

Compound interpretation reduces to slot filling, i.e. evaluating how appropriate

concepts are as fillers of particular slots. A scoring system evaluates each possible

interpretation and selects the highest scoring analysis (Finin 1980; McDonald

1982). Under the rule-based approach interpretation is performed by sequential

rule application. A fixed set of rules are applied in a fixed order, and the first

rule for which the conditions are met results in the most plausible interpretation

(Leonard 1984; Vanderwende 1994). A variant of the concept-based approach uses

unification to constrain the semantic relations between nouns represented as feature

structures (Jones 1995).

A statistical approach for the compound interpretation task was pioneered by

Lauer (1995) who provided a probabilistic model of compound noun paraphrasing

(e.g. state laws are “the laws of the state”, war story is “a story about war”, etc.).

Lauer’s model takes into account only prepositional paraphrases of compounds

(e.g. of, for, in, at, etc.) and explicitly excludes nominalisations. The model assigns

probabilities to different paraphrases using a corpus in conjunction with Roget’s

publicly available thesaurus. It combines the probability of the modifier given a

certain preposition with the probability of the head given the same preposition, and

assumes that these two probabilities are independent. Lauer’s model achieves an

accuracy of 47.0%.

Rosario and Hearst (2001) attempt a task similar to Lauer’s for the biomedical

domain. Rosario and Hearst develop their own inventory of 38 semantic relations

(e.g. procedure characterises tissue pathology, instrument characterises biopsy

needle) and use it to annotate compounds extracted from MedLine. They recast

compound noun interpretation in terms of a classification task and use neural

networks in conjunction with umls, a lexical hierarchy designed specifically for the

medical domain (see section 6.3.1 for details), to perform the classification, achieving

an accuracy of 60%. Again nominalisations are not handled specifically but the

relations subject and object (see examples (20a,b)) are included in the set of

relations proposed by Rosario and Hearst.

The automatic interpretation of nominalisations has been previously addressed by

Lapata (2002). Lapata’s work focused on nominalisations naturally occurring in the

British National Corpus (BNC) (Burnard 1995), and proposed a probabilistic model

for the interpretation of compounds whose modifier is either the subject or direct

object of the deverbal head, thus excluding cases with pp-arguments (see (20c)–(20e)).

The argument relation between a deverbal head and its modifier was approximated

(via parsing) by mapping the compound head to its underlying verb and counting

the number of times the modifier was its subject or object. In the face of data

sparseness the co-occurrence frequency of a verb and its argument was recreated

using smoothing methods that either rely on corpus-internal distributional evidence

(Dagan et al. 1999) or on corpus-external semantic resources such as WordNet or

Roget’s thesaurus (Lauer 1995; Resnik 1993). The approach achieved an accuracy

of approximately 80% on the binary classification task.

Nominalisations provide an interesting testbed for evaluating the portability of

nlp resources to the biomedical domain. The estimation of the likelihood of an
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interpretation relies on the availability of parsed data, at least if one follows the

approach put forward by Lapata (2002). Before parsing, the biomedical text must be

part-of-speech tagged and tokenised. State-of-the-art parsers are frequently trained

and tested on the Penn Treebank (Marcus et al. 1993) and it is not clear whether

they produce meaningful syntactic analyses for different domains and text genres.

In addition to obtaining correct syntactic analyses, argument relations must be

identified for interpreting nominalisations. In this paper we evaluate whether state-

of-the-art nlp resources can be used to syntactically and semantically analyse

MedLine abstracts. We evaluate these different resources against the nominalisation

interpretation task. Previous work (e.g. Lapata 2001) has shown that the task is

amenable to an empirical approach which relies on the combination of several

resources that are typically available for domain-independent text.

In what follows we focus on processing the MedLine abstracts for obtaining

data useful for the nominalisation task. Similarly to Rosario and Hearst (2001)

we treat their interpretation as a classification task and experiment with different

features using the C4.5 decision tree learner (Quinlan 1993). Following Lauer (1995)

and Lapata (2002) we adopt a paraphrasing task. The argument relation between a

deverbal head and its modifier is approximated by the relation of the underlying verb

and its arguments. In contrast to Lapata (2002) we take pp-objects into account

(see (20c)–(20e)) and use verb-argument counts as features for the decision tree

learner.

In order to obtain counts of argument relations we experiment with two parsers:

Abney’s (1996) partial parser, Cass, and the statistical parser developed by Briscoe

and Carroll (2002). Both parsers extract argument relations, but differ in the amounts

of linguistic knowledge they rely upon in order to produce syntactic analyses.

Notably, Briscoe and Carroll’s parser produces a full grammatical analysis, whereas

Cass only identifies shallow linguistic patterns (i.e. chunks) without attempting to

resolve attachment ambiguities. Neither of these parsers has been previously used to

process biomedical text. In the following sections, we describe how these parsers were

employed to obtain counts for the nominalisation interpretation task and compare

their performance. In cases where we find no evidence about the co-occurrence of a

verb and its arguments, we recreate the missing counts using taxonomic information.

We experiment with WordNet (Miller et al. 1990), a general purpose resource

and also with umls, a lexical database designed specifically for the biomedical

domain.

In order to compare the relative utility among the various linguistic resources

available, we in fact acquired several models for interpreting nominalisations and

compared their performance on the interpretation task. These models varied along

the following dimensions. First, they either used verb-argument counts acquired

from Abney’s (1996) parser, Cass, or from Briscoe and Carroll’s (2002) tag sequence

grammar (the tsg). Secondly, they either used WordNet or umls to smooth over

sparse data on verb-argument counts. Third, the models either included as a

parameter the nominalisation affix of the deverbal head (e.g. -ation, -ment) or they

did not. And finally, the models either included information about the context of the

nominalisation or they did not. This context was encapsulated in various ways: either
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as part-of-speech information or as word forms; and the context taken into account

ranged from 1 word/pos tag to 5, occurring to the left of the nominalisation and/or

to the right of it.

Section 5 describes how we built upon the pre-processing described in section 3 to

process the entire ohsumed corpus, first with Cass and then with the tsg. Section 6

focuses on the interpretation task; it reports our machine learning experiments, and

compares and evaluates our different features.

5 Extracting grammatical relations

In the following sections we briefly describe the two parsers we used to extract

information about grammatical relations, and we assess their performance on the

biomedical data.

5.1 Chunking with Cass

We first parsed our corpus of MedLine abstracts with Cass (Abney 1996) a chunker

whose main feature is the finite-state cascade technique. A finite-state cascade is a

sequence of non-recursive levels: phrases at one level are built on phrases at the

previous level without containing same level or higher-level phrases. Two levels of

particular importance are chunks and simplex clauses. A chunk is the non-recursive

core of intra-clausal constituents extending from the beginning of the constituent to

its head, excluding post-head dependents (i.e. np, vp, pp), whereas a simplex clause

is a sequence of non-recursive clauses (Abney 1996). Cass recognises chunks and

simplex clauses using a regular expression grammar without attempting to resolve

attachment ambiguities.

The parser comes with a large-scale grammar for English and a built-in tool that

extracts predicate-argument tuples out of the parse trees that Cass produces. More

specifically, the tool identifies subjects and objects as well as pps without however

distinguishing arguments from adjuncts. We consider passive verbs followed by the

preposition by and a head noun as instances of verb-subject relations. Our verb-

object tuples also include prepositional objects even though these are not explicitly

identified by Cass. We assume that pps adjacent to the verb and headed by the

prepositions about, against, as, at, between, by, for, from, in, into, of, on, through,

to or with are prepositional objects.

The input to the process is the entire ohsumed corpus after it has been pre-

processed as described in section 3: this involves the pipeline in Figure 3 followed

by the additional layers of processing described in section 3.2. The output format

of this tokenisation is converted to Cass’s input format, which is a non-xml file

containing one word per line with tags separated by the tab character. We achieve

this conversion using xmlperl with a simple rule file. The output of Cass and the

grammatical relations processor is a list of each verb-argument pair in the corpus

as shown in Table 2.



46 C. Grover, A. Lascarides and M. Lapata

Table 2. Verb-argument pairs obtained from Cass

Verb Argument relation

manage obj refibrillation
respond subj psoriasis
access to system
protect against osteoporosis
anaesthetize with oxide

5.2 Parsing with the Tag Sequence Grammar

Our second method of acquiring verb grammatical relations uses the statistical

parser developed by Briscoe and Carroll (Briscoe and Carroll 2002; Carroll and

Briscoe 2002) which is an extension of the anlt grammar development system.

The statistical parser, known as the Tag Sequence Grammar (tsg) parser, uses a

hand-crafted grammar where the lexical entries are pos tags rather than the word

forms themselves. Thus it is strings of tags that are parsed rather than strings of

words. The statistical part of the system is the parse ranking component where

probabilities are associated with transitions in an lr parse table. The grammar does

not achieve full-coverage but on the ohsumed corpus we were able to obtain parses

for 99.05% of the sentences. The number of parses found per sentence ranges from

zero into the thousands but the system returns the highest ranked parse according

to the statistical ranking method. We do not have an accurate measure of how many

of the highest ranked parses are actually correct but even a partially incorrect parse

may still yield useful grammatical relations data.

Carroll and Briscoe (2002) map tsg parse trees to representations of grammatical

relations. (For details of the grammatical relation annotation scheme, see Carroll,

Briscoe and Sanfilippo (1998) and Carroll, Minnen and Briscoe 1999). This format

can easily be mapped to the same format as described in section 5.1 to give counts

of the number of times a particular verb occurs with a particular noun as its subject,

object or prepositional object. The Carroll and Briscoe scheme identifies the surface

subject of passives as underlying objects and in the mapping to our format we

recover the obj relation.

The pre-processing for the tsg input was less elaborate than that described in

section 3.3, with less above-word-level tokenisation owing to the use of a different

tagger. As explained above, the tsg parses sequences of tags. However, it requires

a different tagset from that produced by ltpos, namely the claws2 tagset (Garside

1987). To prepare the ohsumed corpus for parsing with the tsg we therefore tagged

it with Elworthy’s (1994) tagger and since this is a non-xml tool we used xmlperl to

invoke it and to incorporate its results back into the xml mark-up. Sentences were

then converted to the tsg input format.

Figure 4a illustrates the number of tokens obtained for each argument relation

from MedLine with Cass and the tsg. Figure 4b shows the ratio of the counts

obtained by Cass to the counts obtained by the tsg. Note that the counts obtained

from Cass are consistently higher than those obtained from the tsg parser. For

prepositions this is to be expected, since the tsg parser’s statistical method of
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Fig. 4. Argument Relations in MedLine extracted with Cass and the tsg.

ranking parses will sometimes attach a pp immediately following a verb as an adjunct

where for Cass post-verbal pps are assumed to be complements (see section 5.1). By

computing the ratio we can observe how the parsers differ for individual argument

relations. The ratio for pp-arguments ranges from 2.41 to 3.99 with the exception

of by (6.38) and about (0.0003), while those for subj and obj are 1.12 and 1.31,

respectively.

5.3 Discussion

Both Cass and the tsg parser provide a shallow syntactic analysis. The former

only identifies shallow linguistic patterns (i.e. chunks) without attempting to resolve

attachment ambiguities, whereas the latter outputs a full syntactic analysis. There

is a trade-off between choosing among various syntactic analyses and generating

errors: the tsg tends on average to disambiguate and hence is more likely than Cass

to generate a parse that doesn’t comply with the right parse; on the other hand

Cass on average generates a more partial parse than tsg.

We further explored the relation between Cass and the tsg parser by comparing

the obtained corpus frequencies for the different argument relations. More specific-

ally, we explored whether there is a linear relationship between the counts obtained

with Cass and the tsg parser using correlation analysis for the argument relations

presented in Figure 4. The verb-argument frequencies were log-transformed. A

statistically significant correlation coefficient was obtained for the Cass and tsg

counts (Pearson’s r = .766, N = 17, p < 0.05). This indicates that despite their

differences the two parsers extract related information from the biomedical domain.

We further investigate their differences and similarities using a task-based evaluation

paradigm, i.e. the automatic interpretation of nominalisations.

6 Interpreting nominalisations

Having collected two different sets of frequency counts from the entire MedLine

corpus for verbs and their arguments, we performed an experiment to discover
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<W P=‘NN’ LM=‘reaction’ VSTEM=‘react’>reaction</W>

<W P=‘NN’ LM=‘growth’ VSTEM=‘grow’>growth</W>

<W P=‘NN’ LM=‘control’ VSTEM=‘control’>control</W>

<W P=‘NN’ LM=‘coding’ VSTEM=‘code’>coding</W>

Fig. 5. Annotated nominalisations in OHSUMED.

(a) whether it is possible to reliably predict semantic relations in nominalisation-

headed compounds and (b) whether the two methods of collecting frequency counts

make any significant difference to the process. In the following section we describe

how compound nouns in general and nominalisations in particular were annotated

in our corpus. Section 6.1 describes how the data necessary for our classification

task were obtained and reports an annotation study which assesses whether our

class inventory can be reliably used by humans.

6.1 Data collection

To collect data for the experiments reported below we needed to (a) mark-

up deverbal nominalisations with information about their verbal stem to give

nominalisation-verb equivalences and (b) to mark-up compounds in order to collect

samples of two-word compounds headed by deverbal nominalisations. For the first

task we combined the lemmatiser with the use of lexical resources. In a first pass

we used a second call to the morpha lemmatiser to find the verbal stem for -ing

nominalisations such as screening. Then we looked up the remaining nouns in a

nominalisation lexicon which we created by combining the nominalisation list which

is part of the knowledge sources provided by umls (2000 version) with the nomlex

nominalisation lexicon (Macleod, Grishman, Meyers, Barrett and Reeves 1998). As

a result of this processing, it was possible for a large proportion of the deverbal

nominalisations in ohsumed to be marked up with a vstem attribute whose value is

the verbal stem (see Figure 5). Since this method is dependent on the completeness

of the combined nominalisation lexicon, some cases were missed. For example, a

sample of some of the nouns which were not marked as nominalisations included

exposure and focus because these were absent from the nominalisation lexicon.

To mark up compounds we developed an fsgmatch grammar for compounds

of arbitrary length and we used this to process a subset of the first two years

of the corpus. More specifically, our compound detection procedure involved not

only noun sequences but also sequences composed of adjectives and nouns. Manual

inspection of a sample of 1,000 candidate compound sequences showed that our

fsgmatch grammar achieved an accuracy of 95.6%.

6.2 Inter-annotator agreement

Using the lt xml program sggrep we extracted all sentences containing two-word

compounds headed by deverbal nominalisations and from this we took a random

sample of 1,000 nominalisations. These were manually disambiguated using the
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Table 3. Distribution of nominalisation classes

Class Example Frequency

obj weight loss 516 (46.65%)
subj age distribution 295 (26.67%)
with graft replacement 27 (2.44%)
to treatment response 13 (1.17%)
on knee operation 8 (0.72%)
for nonstress test 6 (0.54%)
in vessel obstruction 5 (0.45%)
from blood elimination 4 (0.36%)
about diabetes knowledge 3 (0.27%)
against seizure protection 1 (0.09%)
by aerosol administration 1 (0.09%)
into lipid composition 1 (0.09%)
of water deprivation 1 (0.09%)

na stroke death 177 (16.0%)
nv survival analysis 48 (4.34%)

categories shown in Table 3. These categories denote the argument relation between

the deverbal head and its modifier. We also included the categories nv (non deverbal)

for nouns that are either part of a larger compound or simply adjacent without

being in head modifier relationship (e.g. survival analysis is part of the larger term

proportional hazards survival analysis) and na (non-applicable) for nominalisations

with relations other than the ones predicted by the verb’s subcategorisation frame

(e.g. in stroke death, stroke is not the argument of the verb die).

Before attempting to interpret nominalisations automatically we evaluated if

humans can decide whether the above categories can be reliably assigned to

nominalisations. Two judges were presented with 200 nominalisations (a subset

of the original 1,000) and were asked to use any of the relations presented in

Table 3 for the annotation task. The judges were not medical experts; they were

given some simple guidelines (e.g. use the class na when the modifier is not an

argument of the compound head, use a preposition if the modifier is the object of a

deverbal head which is derived from a verb subcategorising for a pp) but no prior

training. The nominalisations were disambiguated in context: the judges were given

the corpus sentence in which the nominalisation occurred together with the previous

and following sentence. The judges were advised to consult the umls database

(http://umlsks4.nlm.nih.gov/) to retrieve the meaning of unknown words.

The judges’ agreement, measured using the Kappa coefficient (Cohen 1960), was

K = .75 (N = 200, k = 2) which translates to a percent agreement of 82.7%.

This agreement was good given that the judges were not medical experts and were

provided with minimal instructions. Lapata (2002) reports an agreement of .78 on

the bnc for the simpler task of deciding whether a nominalisation receives a subject

or an object interpretation.

6.3 Experiments

We used a machine learning approach for the disambiguation of nominalisations

which explored several syntactic, semantic, and contextual features which we describe

below. The different features were combined using the C4.5 decision tree learner
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(Quinlan 1993). Decision trees are among the most widely used machine learning

algorithms. They perform a general to specific search of a feature space, adding the

most informative features to a tree structure as the search proceeds. The objective

is to select a minimal set of features that efficiently partitions the feature space into

classes of observations and assemble them into a tree.

In contrast to Lapata (2002) our classification is not binary but includes several

argument relations (e.g. by, for, to, see Table 3). The classifier was trained and tested

using 10-fold cross-validation on 1,000 manually disambiguated nominalisations. For

the experiments reported in this paper we used the Weka (Witten and Frank 2000)

implementation of the C4.5 decision tree learner. Section 6.3.1 describes the inventory

of features we experimented with and section 6.3.2 reports our results.

6.3.1 Features for interpreting nominalisations

Frequency of Argument Relations For each candidate nominalisation our task is to

predict the correct interpretation class (see Table 3). We approximate nominalisations

by verb argument relations and for each candidate in the training set we record the

number and types of relations extracted from the ohsumed corpus. So, nominalisa-

tions are represented by a vector of counts of the argument relations presented in

Table 3. Example (22) shows these vector representations for the compounds graft

replacement, cell stimulation, and temperature response. The counts in (22) represent

the argument relations about, against, by, for, from, in, into, of, on, through,

to, with, obj, and subj, respectively.

(22) a. graft replacement [0, 7, 0, 0, 3, 0, 0, 0, 0, 0, 0, 24, 18, 0]

b. cell stimulation [0, 170, 2, 91, 257, 12, 0, 8, 0, 7, 7, 41, 564, 175]

c. temperature response [0, 0, 0, 0, 3, 0, 0, 0, 0, 2, 2, 0, 0, 0]

Recall that one of our goals is to directly compare Cass and the tsg parser on

the nominalisation interpretation task. In order to perform this comparison, we

will represent nominalisations by two types of vectors obtained from Cass and tsg

counts, respectively. Note that the vectors in (22) are relatively sparse. This is partly

because the ohsumed corpus contains abstracts of medical articles; these abstracts

aim to summarise and condense the information present in the main article and are

abundant with compounds which are typically used as a text compression device,

i.e. to pack meaning into a minimal amount of linguistic structure (Marsh 1984). The

occurrence of verbs is therefore sparser. This means that we cannot tell in advance

whether a zero count in (22) is the result of a linguistic constraint (i.e. a given verb

does not take a pp object) or merely the result of insufficient evidence.

To counterbalance sparse data problems we also experimented with a simple

smoothing approach. More specifically, we recreated the frequency of verb-argument

relations for which we obtained a zero count using a simplified version of Resnik’s

(1993) measure of selectional association; this is based on relative entropy and

uses a taxonomy to estimate the co-occurrence frequency of a predicate and its

argument by substituting the argument with the class by which it is represented in

the taxonomy.



A comparison of parsing technologies for the biomedical domain 51

C0007634

cell 

C0002449 C0005955

ameloblast

Cell (T025)

Fully Formed Anatomical Structure

Anatomical Structure

Physical Object

Entity

.....

.....

.....

.....

.....

bone cell marrow

Fig. 6. A fragment of the umls Metathesaurus.

In a nutshell, this measure replaces Resnik’s information-theoretic approach with

a simpler measure which makes no assumptions with respect to the contribution of

a semantic class to the total quantity of information provided by a predicate about

the semantic classes of its argument. It simply substitutes the argument occurring

in the predicate-argument relation with the concept by which it is represented in a

taxonomy and estimates predicate-argument co-occurrence frequency by counting

the number of times the concept corresponding to the argument is observed to

co-occur with the predicate in the corpus. Because a given word is not always

represented by a single class in the taxonomy (i.e. the argument co-occurring with

a predicate can generally be the realisation of one of several conceptual classes),

the frequency counts for a predicate-argument relation are constructed for each

conceptual class by dividing the contribution from the argument by the number of

classes to which it belongs.

This approach has been used by Lauer (1995) for recreating the frequencies of

noun-preposition bigrams for the interpretation of compound nouns, by Lapata

(2002) for the interpretation of nominalisations, and by Lapata, Keller and

McDonald (2001) for modelling plausibility judgements for adjective-noun bigrams.

Most previous approaches relied on taxonomic information available in WordNet

(Lapata et al. 2001; Lapata 2002) or Roget’s thesaurus (Lauer 1995; Lapata 2002)

for recreating unseen predicate-argument combinations. In this paper we experiment

with WordNet (Miller et al. 1990), but also with the umls Metathesaurus (Humphreys

et al. 1998).

The Metathesaurus is a database of information on concepts that appear in one

or more of a number of different controlled vocabularies and classifications used in

the field of biomedicine. In essence, its purpose is to link alternative names and views

of the same concept together and to identify useful relationships between different

concepts. The umls Semantic Network provides a categorisation of all concepts

represented in the Metathesaurus and the relationships between them. The Network

contains 134 semantic types (e.g. Biologic Function Events, Organisms, Chemicals)
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and 54 relationships (e.g. Parent, Child, Sibling, Synonym). Words are linked to

concepts and inherit high level semantic types via “isa” links. Figure 6 shows a

fragment of the umls Metathesaurus.4 As can be seen from Figure 6 lexical items

(e.g. cell, bone cell marrow) are mapped to unique concept IDS (e.g. C0007634). The

semantic type of these concepts is T025 (i.e. Cell); its hypernyms are “Fully Formed

Anatomical Structure”, “Anatomical Structure”, “Physical Objects”, and “Entity”.

We recreated the frequencies of sparse verb-argument relations using both Word-

Net and the umls Metathesaurus as we wanted to see whether domain-specific

resources would have an impact on the interpretation task as opposed to a general

purpose taxonomy like WordNet. Example (23) shows the vector representations

from (22), this time with recreated frequencies. Note that only counts for argument

relations with zero frequencies are recreated. As can be seen from (23c) for some

argument relations the recreated frequency is also predicted to be zero.

(23) a. graft replacement [0.12, 7, 1.63, 0.38, 3, 0.22, 0.21, 0.41, 0.66, 0.21, 5.6, 24,

18, 6.3]

b. cell stimulation [0.16, 170, 2, 91, 257, 12, 0.33, 8, 0, 7, 7, 41, 564, 175]

c. temperature response [0, 0, 0, 1, 3, 0, 4, 1, 0, 2, 2, 4, 3.25]

To summarise, predicate argument relations were encoded in six different ways:

(a) raw counts as obtained from Cass, (b) raw counts extracted from the output of

the tsg, (c) recreated counts using Cass and WordNet, (d) recreated counts based

on Cass and umls, (e) recreated tsg counts with WordNet, and (f) smoothed tsg

counts with umls. Our experiments in Section 6.3.2 investigate the influence of these

different factors.

Affixes In some cases the nominalisation affix of the compound head is indicative

of whether its modifier is a subject or object. For example, head nouns with the

affix -er typically receive an agentive interpretation (e.g. builder is someone who

builds things) (Rappaport and Levin 1990). Similarly, the affix -or or -our prompts

a subject related interpretation (e.g. behaviour). We exploited the semantics of the

nominalisation affixes by including them as features for our decision tree learner.

More specifically, each candidate nominalisation head was morphologically analysed

into a verb and a derivational affix. The latter was directly used as a feature for the

machine learning. Morphological information about deverbal nouns was extracted

from a nominalisation lexicon which was created from umls and nomlex (see

section 6.1 for details). Table 4 displays the distribution of the most frequent affixes

in our data (frequency > 10). The feature “conv” represents conversions, i.e. nouns

derived from verbs without the addition of an affix (Quirk et al. 1985).

Context The features described above capture information about the argument

relations between a deverbal head and its modifier without however taking context

4 The information displayed in Figure 6 is the result of post-processing and piecing together
different sources of information that are typically kept separate in the Metathesaurus. This
was necessary as we wanted to have a taxonomy comparable to WordNet.
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Table 4. Nominalisation affixes

Affix Example Frequency

-ion reaction 394 (42.09%)
-conv test 282 (30.13%)
-ation localization 109 (11.65%)
-ment impingement 63 (6.73%)
-ing greeting 25 (2.67%)
-ance aberrance 19 (2.03%)
-ition abolition 12 (1.28%)
-ence abstinence 11 (1.17%)
-ure departure 11 (1.17%)
-age blockage 10 (1.06%)

into account. Lapata’s (2001) study showed that contextual features are important

for the interpretation of nominalisations and perform as well as numeric features

that are based on co-occurrence frequency. We therefore included the context

surrounding the nominalisation as an additional feature for the decision tree learner.

Context was encoded as lemmas or parts of speech to the left and right of the

candidate nominalisations. We also varied the window size parameter between one

and five words before and after the nominalisation target. Example (24) shows the

contextual features for graft replacement. In (24b) the feature vector consists of the

nominalisation and a context of five words (i.e. lemmas) to its right and five words

to its left. In (24c) the lemmas are reduced to their parts of speech.

(24) a. The operative repair was accomplished by graft replacement of the involved

segment of the aorta in all but one patient who underwent a primary repair.

b. [operative, repair, be, accomplish, by, graft, replacement, of, the, involved,

segment, of]

c. [JJ, NN, VBD, VBN, IN, NN, NN, IN, DT, JJ, NN, IN]

6.3.2 Results

In this section, we explore the effect of different features on the interpretation task.

We report experiments on two tasks: (a) the task of predicting all classes found in the

training data, including nas and nvs (recall from section 6.2 that these categories were

reserved for compounds that were either mistakenly identified as nominalisations or

did not receive an argument related interpretation) and (b) the task of predicting

only nominalisations that receive argument related interpretations, i.e. excluding

nas and nvs. We called the first task AC (standing for All Categories) and the

second OA (standing for Only Arguments). For both the AC and OA tasks the

results are compared to the naive baseline, which (always) chooses the most frequent

relation (i.e. obj). We also report an upper bound on disambiguation performance by

measuring how well human judges agree with one another (percentage agreement) on

the class assignment task. Recall from section 6.2 that 200 instances were annotated

by two judges with the categories shown in Table 3. The agreement on the AC task

was 82.7%. The agreement for the OA task was 88.6%. The latter was computed

after excluding from the data set instances that were classified by the judges as

either nv or na.
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Fig. 7. Disambiguation accuracy for Cass and TSG using raw and smoothed counts.

Figure 7a shows the performance of the decision tree learner on the AC clas-

sification task when using argument frequencies obtained with the tsg and Cass,

respectively. Figure 7b reports accuracy on the OA task. For both tasks, we examine

the influence of raw and smoothed frequencies on the classification task with or

without affix related information. The following features were taken into account

both for Cass and the tsg (see x-axis in Figures 7a,b): (a) raw frequency (f), (b) raw

frequency and affix related information (f,a), (c) smoothed frequency using WordNet

(wn), (d) smoothed WordNet frequency and affixes (wn,a), (e) smoothed frequency

using umls, (f) smoothed umls frequency and affixes (umls,a), and (g) smoothed

frequency using umls and WordNet in combination with affixes (umwn,a).

As can be seen from Figures 7a,b the decision tree learner outperforms the naive

baseline for both tasks (ac and oa), although the learner’s performance is not close

to the human upper bound. All features are significantly better than the baseline and

worse than the upper bound. Significance values and pairwise comparisons (using

the χ2 statistic) for all features are given in the Appendix (see Tables 8, 9).

Let us first concentrate on the ac task and the features obtained with the tsg. wn,

wn,a, umls,a (but not umls) and umwn,a significantly outperform the raw argument

frequency feature f. wn is significantly better than umls but not f,a, umls,a or wn,a,

whereas umwn,a significantly outperforms all other features reaching an accuracy

of 66.9%. A similar result is observed with Cass-related features. Again umwn,a

significantly outperforms all other features with an accuracy of 64.1%. f,a and wn,a

are significantly better than f, but not better than wn, umls, or umls,a. In fact,

there is no significant difference among the features fa, wn, wn,a, umls and umls,a.

Higher accuracies are observed with the tsg rather than with Cass, however the

difference is not statistically significant. Table 5 shows pairwise comparisons between

Cass-related and tsg-related features using the χ2 statistic).

We now turn to the simpler OA task. In general, higher accuracies are observed

for OA than for AC (compare Figures 7a and 7b). This is not surprising given

that the features we employed are particularly tailored to the nominalisation

interpretation task and are not expected to be very useful for identifying noun
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Table 5. Significance testing between tsg and Cass features

AC Task OA Task

Features χ2 p-value χ2 p-value

fCass – fTSG 0.12 0.73 0.81 0.37
f,aCass – f,aTSG 0.01 0.93 0.01 0.92
wnCass – wnTSG 2.83 0.09 0.07 0.79
wn,aCass – wn,aTSG 2.60 0.10 0.05 0.82
umlsCass – umlsTSG 0.47 0.49 1.14 0.28
umls,aCass – umls,aTSG 1.16 0.30 0.45 0.50
umwn,aCass – umwn,aTSG 1.92 0.16 0.03 0.86

sequences that are not nominalisations (i.e. nvs) or compounds that do not express

argument relations (i.e. nas). Similarly to the OA task, the best performing feature

for both the tsg and Cass is umwn,a achieving an accuracy of 77.2% and 77.5%,

respectively. For the features estimated from the output of the tsg we observe

the following (for significance values see Tables 10, 11 in Appendix): all features

significantly outperform the baseline, but perform significantly worse than the upper

bound. The feature f performs significantly worse than any other feature. wn and

wn,a perform significantly better than f,a, umls and umls,a. Again the feature

umwn,a significantly outperforms all other features.

Similar tendencies are observed for Cass related features. The feature f performs

significantly worse than any other feature. f,a performs significantly worse than

wn,a and umwn,a but it does not outperform wn, umls or umls,a. wn,a signific-

antly outperforms umls,a but not umwn,a. In fact, the latter feature significantly

outperforms all other features. The two parsers do not yield significantly different

results as shown in Table 5.

To summarise, we observe the following tendencies so far for both tasks. Smoothed

argument counts yield better accuracies than raw frequencies when WordNet is used

to recreate unseen counts, whereas this is not the case when umls is employed

for the smoothing task. The combination of the two taxonomies outperforms all

other features both for Cass and the tsg. The type of parser employed for the

extraction of argument relations does not seem to have a large effect on the disam-

biguation task: we found no significant difference in accuracy between Cass and the

tsg.

Table 6 reports precision, recall and F-measure on the AC task for individual

argument relations when the learner is trained/tested with the best feature combin-

ation, i.e. umwn,a. Table 7 shows the learner’s performance on the OA task. tsg

generally outperforms Cass on the AC task for all relations (including na and nv)

except for on (see Table 6). Note that the learner has difficulty with the relations

against, by, into, and of. This is not surprising given that these appear only once in

the training/test corpus (see Table 3). Similar tendencies are observed for the simpler

OA task (see Table 7): tsg performs better than Cass for all relations except for for

and subj. A general observation is that both Cass and the tsg are fairly good at

predicting object and subject relations. Predicting pp-related arguments is relatively

harder. The is due to data sparseness but also to the fact that these relations are
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Table 6. Argument relations (AC task)

AC tsg AC Cass

Class Precision Recall F-measure Precision Recall F-measure

obj 0.70 0.79 0.74 0.70 0.78 0.73
subj 0.61 0.60 0.60 0.59 0.57 0.58
with 0.63 0.44 0.52 0.63 0.37 0.47
to 0.78 0.54 0.64 0.78 0.54 0.64
on 0.50 0.25 0.33 1 0.25 0.40
for 0.60 0.5 0.55 0.43 0.5 0.46
in 0.33 0.2 0.25 0 0 0
from 0 0 0 0 0 0
about 1 0.67 0.80 0.5 0.33 0.40
against 0 0 0 0 0 0
by 0 0 0 0 0 0
into 0 0 0 0 0 0
of 0 0 0 0 0 0

na 0.55 0.48 0.52 0.53 0.48 0.50
nv 0.42 0.27 0.33 0.36 0.25 0.23

Table 7. Argument relations (OA task)

AC tsg AC Cass

Class Precision Recall F-measure Precision Recall F-measure

obj 0.77 0.84 0.80 0.77 0.84 0.80
subj 0.66 0.62 0.64 0.67 0.64 0.65
with 0.78 0.52 0.62 0.77 0.48 0.59
to 0.78 0.54 0.64 0.70 0.54 0.61
on 0.60 0.38 0.46 0 0 0
for 0.50 0.50 0.50 0.75 0.50 0.60
in 0.33 0.20 0.25 0.17 0.20 0.18
from 0 0 0 0 0 0
about 1 0.67 0.80 0.50 0.33 0.40
against 0 0 0 0 0 0
by 0 0 0 0 0 0
into 0 0 0 0 0 0
of 0 0 0 0 0 0

harder to identify accurately while parsing. Recall that Cass does not distinguish

between arguments and adjuncts and the tsg makes this decision stochastically.

The fact that WordNet, a general purpose taxonomy, outperforms umls, a

biomedical thesaurus, is somewhat counterintuitive as one would expect the latter to

have a larger vocabulary overlapping with the biomedical data, thus resulting in a

higher performance than using WordNet. We decided to investigate the discrepancy

between umls and WordNet further by looking at the size of the two dictionaries

and their coverage on our data.

umls provides semantic definitions for 1,277,338 terms. Of these terms only 14%

are simplex terms (i.e., one word). The majority of the terms in umls are either

compounds (gene product, nervous system) or complex units such as 100 plus b5

8ch dt70502 cath, 2,2-thiodisuccinic acid, or accident-explosion of methane. WordNet

has 94,473 entries for nouns. Of these 50.6% are simplex terms. Both Cass and tsg
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identify the nps or pps a given verb might take as arguments and from those extract

only the head noun. This means that the verb-argument tuples used for recreating

unseen counts do not contain any complex terms. From the simplex nouns listed

in umls, 7.30% are attested as verbal arguments in tuples extracted by the tsg;

8.86% of the simplex umls nouns are found as arguments in the tuples obtained

with Cass. 25.10% of the simplex WordNet nouns are arguments in tsg tuples and

25.20% are arguments in Cass tuples. These figures indicate that the argument nouns

extracted either via Cass or the tsg are more likely to be found in WordNet than in

umls.

Consider now the coverage of the two dictionaries on the annotated data used

for training/testing the decision tree learner: of the modifier nouns (e.g. age in age

distribution) attested in the data, 84.73% are found in umls and 88.70% are found

in WordNet. This means that for some candidate nominalisations for which no

argument-verb relations are found in our corpus, smoothing will not be possible if

they are not listed in umls or WordNet. Given that WordNet has a better coverage

than umls on our data set, it follows that the former has a better chance at recreating

the missing argument frequencies.

An obvious question is whether umls and WordNet are complementary, i.e. do

the nouns listed in both dictionaries overlap or not? A total of 19,364 argument

nouns from the tuples extracted by the tsg are listed in both umls and WordNet.

Of these, 33.06% are common in both dictionaries (i.e. 66.94% are listed either

in umls or in WordNet but not in both). A similar picture emerges for Cass: a

total 22,296 argument nouns are found in both dictionaries; of these, only 29.80%

are common between umls and WordNet. This explains why the combination of

umls and WordNet (see feature umwn,a in Figure 7) outperforms all other features:

it has greater smoothing power as it recreates missing argument frequencies by

taking more data into account. The combination of the two dictionaries also has

a better coverage on the annotated data, where 94.94% of the modifier nouns

have a dictionary entry over umls’ coverage of 84.73% and WordNet’s coverage of

88.70%.

We next examine how accuracy is affected when contextual features are combined

with features representing argument relations. We only display some (i.e. the most

informative) of the feature combinations we examined. Furthermore, we focus on

smoothed counts rather than raw frequencies as they deliver better accuracies on

the classification task. For both parsers frequency counts are smoothed using the

combination of umls and WordNet (umwn); nominalisation affixes (a) are used as

an additional feature. Figures 8 and 9 display how the decision tree learner performs

for the AC and OA task, respectively, when context is represented by lemmas or

parts of speech. The letters L and R indicate whether left or right context is taken

into account, where the numbers represent the size of the context (see x-axis).

For comparison, we also include the learner’s accuracy for the best non-contextual

features (i.e. umwn,a). So, l5 describes five lemmas to the left of the nominalisation

target combined with umwn,a; l0r0 denotes the absence of context; in this case

only the head and modifier of the nominalisation are used as features together with

umwn,a.
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Fig. 8. Disambiguation accuracy for Cass and TSG using smoothed counts and contextual

features.
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Fig. 9. Disambiguation accuracy for Cass and TSG using smoothed counts and contextual

features.

As can be seen in Figure 8 part of speech tags yield lower performances than

lemmas on the AC task. In fact, encoding context as parts of speech yields lower

accuracies than using no context at all (see umwn,a). A slight increase in accuracy

over just using umwn,a is obtained when context is encoded as lemmas. The highest

accuracy is obtained with l5r5 for both tsg (68.4%) and Cass (64.1%). However the

difference between l5r5 and umwn,a is not significant, neither for Cass nor for the

tsg (see Table 12 in the Appendix). Furthermore, there is no significant difference

in the two parsers’ performance (see Table 12). The lower performance of part of

speech tags is not entirely unexpected: lemmas capture lexical dependencies which

are somewhat lost when a more general level of representation is introduced.

A different picture emerges for the OA task (see Figure 9). Here, part of speech

tags seem to outperform lemmas. This is particularly the case for the tsg when

left context or no context is employed (see l5–l0r0 in Figure 9a). For Cass, part

of speech tags perform better than lemmas for left context and for narrow right

contexts (see l5–l0r0 and r3–r1 in Figure 9b). Recall that the OA task excludes nas
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and nvs, i.e. non-argument classes. It is not therefore surprising that part of speech

tags become more relevant in the OA task as they potentially express syntactic

differences that characterize different argument relations. However, the contribution

of context does not seem to enhance classification accuracy. Both for Cass and

the tsg the best accuracy is achieved with no context (l0r0). The latter is not

significantly different from umwn,a (see Table 13 in the Appendix).

In sum, our results demonstrate that the best accuracies on the interpretation

task are achieved when smoothed frequency counts are combined with information

about the nominalisation affixes. Inclusion of contextual features does not yield a

better performance. Our results further indicate that the underlying parser has a

small effect on the interpretation task (see Tables 6 and 7). We further show that

the type and size of the taxonomy used for recreating the argument frequencies

has an impact on classification accuracy. Our best results were obtained when

umls was combined with WordNet. Finally, our accuracies are expectedly lower

than the ones reported in (Lapata 2002) who only attempts a binary classification of

nominalisations (subj, obj) for domain independent text and achieves a performance

of 80%. We obtain a reasonable performance for biomedical text by using generic

nlp resources. We achieve an accuracy of 68.9% on the AC task (using tsg and

features umwn,a and l5r5) and an accuracy of 77.5% on the OA task (using tsg

and features umwn,a and l0r0). We also show that the use of the xml-based lt ttt

toolset provides a highly flexible pipeline architecture that encourages reusable

and modular processing. A major strength of this approach is the way in which

knowledge of the text, represented as xml annotations, is incrementally computed

by the use of successive modules. These pre-processing techniques are critical for the

preparation of highly complex data for higher level parsing tasks.

7 Conclusions

In this paper we have investigated the use of generic, state-of-the-art nlp tools

for performing various nlp semantic tasks over real corpus data in the biomedical

domain. We focused on two complementary tasks: generating a logical form for

the sentences via deep parsing with a hand-crafted grammar; and interpreting

compound nouns with deverbal heads. The former task is challenging given that

technical terms were pervasive in the corpus and our grammar lacked lexical coverage

for a large portion of its sentences (approximately 98% in our case). The latter task

is challenging because the semantic relation in a compound between a modifier and

its head is linguistically implicit; indeed, this is an interpretation task that lies at

the semantics/pragmatics interface (Hobbs et al. 1993). Furthermore, performance

on both of these tasks are adversely affected by the abundance of inherent messiness

in the data; e.g., equations and units of measurement which can create misleading

amounts of syntactic complexity, making it harder to process medical data and

discover novel semantic relations.

There are a number of lessons that we can learn from the experiments we

have reported here. First, pre-processing the corpus data was crucial to suc-

cess. Preprocessing allowed us to (a) obtain accurate information about words
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(their part-of-speech and their stems); and (b) package up expressions such as units

of measurement so that they were treated as unanalysable by the parser. Performing

these tasks prior to parsing dramatically improved parse coverage with a hand-

crafted grammar. The flexibility and robustness of the xml-tools was essential to the

success of these pre-processing stages.

Second, through exploiting meaning paraphrases and surface cues, it is possible to

acquire a reliable model of compound noun interpretation, thanks to the accuracy

and robustness of current state-of-the-art broad coverage parsers such as Cass

and the tsg parser. Overall, the models of nominalisation are more accurate when

lexical taxonomies are used for smoothing, though using context as a feature does

not improve accuracy. There was no clear winner between using Cass vs. the tsg

parser. It seems that the trade-off between partial analyses vs. parse accuracy

were not as important for this task as the presence vs. absence of smoothing and

the size and coverage of the taxonomy used for the smoothing task. However,

it remains for future work to investigate whether utilising a grammar as rich as

the anlt grammar, which would have to be combined with statistical parsing,

would improve overall performance on this task. It may conceivably do this, since

the anlt grammar has access to the subcategorisation frames of all verbs, nouns

and adjectives that appear in the Longmans Dictionary of Contemporary English

(ldoce), and consequently it may improve discrimination between complements vs.

adjuncts compared with the other parsers we investigated, leading to more accurate

predictions about grammatical relations. This is yet to be explored.

The resulting models of compound noun interpretation are highly complex,

making it hard to tease apart the relative importance of the different parameters that

we used in the various models. However, in light of the good performance of all of

these models on a difficult interpretation task, we advocate the use of the knowledge

poor approach we developed here, relying on off-the-shelf nlp components and

available taxonomies.
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Appendix

Using a χ2 test we examined whether the accuracies shown in Figures 7a and 7b

differ significantly. The χ2 values and significance levels are shown below (b is an

abbreviation for baseline and ub for upper bound; the features are explained in

section 6.3.2). Tables 8 and 9 correspond to Figure 7a, whereas Tables 10 and 11

correspond to Figure 7b. In Tables 12 and 13 we examine whether the best contextual

features yield accuracies significantly different from using only umwn, a.
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Table 8. Significance testing, tsg parser, AC task

b f f,a wn wn,a umls umls,a umwn,a

f 11.28**
f,a 26.49** 3.23
wn 43.06** 10.37** 2.03
wn,a 59.05** 18.94** 6.56* 1.29
umls 17.36** 0.66 0.97 5.81* 12.56**
umls,a 34.51** 6.39* 0.54 0.48 3.35 2.95
umwn,a 93.13** 40.20** 20.77** 9.84** 4.01* 30.65** 14.65**
ub 315.97** 214.44** 167.59** 134.26** 110.19** 192.64** 150.0** 73.29**

Table 9. Significance testing, Cass, AC task

b f f,a wn wn,a umls umls,a umwn,a

f 9.37**
f,a 26.05** 4.21*
wn 24.34** 3.53 0.03
wn,a 37.59** 9.51* 1.07 1.46
umls 23.92** 3.37 0.05 0.00 1.56
umls,a 23.50** 3.22 0.07 0.01 1.67 0.00
umwn,a 69.46** 28.15** 10.65** 11.79** 4.97* 12.09** 12.39**
ub 317.37** 223.92** 169.71** 173.99** 145.03** 175.06** 176.14* 98.06**

*p < .05 (2-tailed) **p < .01 (2-tailed)

Table 10. Significance testing, tsgparser, OA task

b f f,a wn wn,a umls umls,a umwn,a

f 7.56**
F,A 23.56** 4.46*
wn 45.43** 16.31** 12.68**
wn,a 53.33** 20.99** 12.68** 0.33
umls 26.28** 5.70* 0.08 11.69** 4.85*
umls,a 33.26** 9.19** 0.85 5.62* 2.42 0.42 1.19
umwn,a 88.64** 32.58** 20.61** 6.24* 3.89* 30.58** 19.79**
ub 257.06** 157.39** 130.91** 90.26** 80.97** 153.20** 128.95** 50.44**

Table 11. Significance testing, Cass, OA task

b f f,a wn wn,a umls umls,a umwn,a

f 7.56**
f,a 23.56** 4.46*
wn 45.43** 16.10** 3.63
wn,a 53.33** 20.99** 6.13* 0.33
umls 26.28** 0.08 0.08 2.66 4.85*
umls,a 33.26** 0.85 0.85 0.97 2.42 0.42 0.42
umwn,a 91.43** 47.19** 22.86** 8.33** 5.36* 20.33** 14.95**
ub 257.06** 182.26** 132.88** 94.60** 84.31** 126.99** 113.63** 48.37**

*p < .05 (2-tailed) **p < .01 (2-tailed)
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Table 12. Significance testing, AC task

b umwn,aTSG umwn,aCass L5R5TSG L5R5Cass

umwn,aTSG 93.93**
umwn,aCass 69.46** 1.92
l5r5TSG 90.55** 0.03 5.69*
l5r5Cass 90.55** 0.03 1.45 1.40
ub 317.37** 73.29** 76.32** 113.77** 98.06**

*p < .05 (2-tailed) **p < .01 (2-tailed)

Table 13. Significance testing, OA task

b umwn,aTSG umwn,aCass L5R5TSG L5R5Cass

umwn,aTSG 88.64**
umwn,aCass 91.43** 0.02
l5r5TSG 76.29** 0.49 0.73
l5r5Cass 79.71** 0.25 0.43 0.73
ub 257.06** 50.44** 48.37** 60.52** 57.57**

*p < .05 (2-tailed) **p < .01 (2-tailed)
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