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Abstract

In this paper we discuss technical issues
arising from the interdependence between
tokenisation and XML-based annotation
tools, in particular those which use stand-
off annotation in the form of pointers to
word tokens. It is common practice for an
XML-based annotation tool to use word to-
kens as the target units for annotating such
things as named entities because it pro-
vides appropriate units for stand-off an-
notation. Furthermore, these units can be
easily selected, swept out or snapped to
by the annotators and certain classes of
annotation mistakes can be prevented by
building a tool that does not permit selec-
tion of a substring which does not entirely
span one or more XML elements. There
is a downside to this method of annota-
tion, however, in that it assumes that for
any given data set, in whatever domain,
the optimal tokenisation is known before
any annotation is performed. If mistakes
are made in the initial tokenisation and the
word boundaries conflict with the annota-
tors’ desired actions, then either the anno-
tation is inaccurate or expensive retokeni-
sation and reannotation will be required.
Here we describe the methods we have
developed to address this problem. We
also describe experiments which explore
the effects of different granularities of to-
kenisation on NER tagger performance.

1 Introduction

A primary consideration when designing an anno-
tation tool for annotation tasks such as Named En-
tity (NE) annotation is to provide an interface that

makes it easy for the annotator to select contigu-
ous stretches of text for labelling (Carletta et al.,
2003; Carletta et al., in press). This can be accom-
plished by enabling actions such as click and snap-
ping to the ends of word tokens. Not only do such
features make the task easier for annotators, they
also help to reduce certain kinds of annotator er-
ror which can occur with interfaces which require
the annotator to sweep out an area of text: with-
out the safeguard of requiring annotations to span
entire tokens, it is easy to sweep too little or too
much text and create an annotation which takes in
too few or too many characters. Thus the tokeni-
sation of the text should be such that it achieves
an optimal balance between increasing annotation
speed and reducing annotation error rate. In Sec-
tion 2 we describe a recently implemented XML-
based annotation tool which we have used to cre-
ate an NE-annotated corpus in the biomedical do-
main. This tool uses standoff annotation in a simi-
lar way to the NXT annotation tool (Carletta et al.,
2003; Carletta et al., in press), though the annota-
tions are recorded in the same file, rather than in a
separate file.

To perform annotation with this tool, it is neces-
sary to first tokenise the text and identify sentence
and word tokens. We have found however that
conflicts can arise between the segmentation that
the tokeniser creates and the segmentation that the
annotator needs, especially in scientific text where
many details of correct tokenisation are not ap-
parent in advance to a non-expert in the domain.
We discuss this problem in Section 3 and illustrate
it with examples from two domains, biomedicine
and astrophysics.

In order to meet requirements from both the
annotation tool and the tokenisation needs of the
annotators, we have extended our tool to allow



Figure 1: Screenshot of the Annotation Tool

the annotator to override the initial tokenisation
where necessary and we have developed a method
of recording the result of overriding in the XML
mark-up. This allows us to keep a record of the
optimal annotation and ensures that it will not be
necessary to take the expensive step of having data
reannotated in the event that the tokenisation needs
to be redone. As improved tokenisation proce-
dures become available we can retokenise both the
annotated material and the remaining unannotated
data using a program which we have developed for
this task. We describe the extension to the anno-
tation tool, the XML representation of conflict and
the retokenisation program in Section 4.

2 An XML-based Standoff Annotation
Tool

In a number of recent projects we have explored
the use of machine learning techniques for Named
Entity Recognition (NER) and have worked with
data from a number of different domains, includ-
ing data from biomedicine (Finkel et al., in press;

Dingare et al., 2004), law reports (Grover et al.,
2004), social science (Nissim et al., 2004), and
astronomy and astrophysics (Becker et al., 2005;
Hachey et al., 2005). We have worked with a num-
ber of XML-based annotation tools, including the
the NXT annotation tool (Carletta et al., 2003; Car-
letta et al., in press). Since we are interested only
in written text and focus on annotation for Infor-
mation Extraction (IE), much of the complexity
offered by the NXT tool is not required and we
have therefore recently implemented our own IE-
specific tool. This has much in common with NXT,
in particular annotations are encoded as standoff
with pointers to the indices of the word tokens. A
screenshot of the tool being used for NE annotation
of biomedical text is shown in Figure 1. Figure 2
contains a fragment of the XML underlying the an-
notation for the excerpt

“glutamic acid in the BH3 domain
of tBid (tBidG94E) was principally used
because ....”.



� body �
.... � w id=‘w609’ � glutamic � /w � � w id=‘w618’ � acid � /w � � w id=‘w623’ � in � /w � � w id=‘w626’ � the � /w �� w id=‘w630’ � BH3 � /w � � w id=‘w634’ � domain � /w � � w id=‘w641’ � of � /w � � w id=‘w644’ � tBid � /w �� w id=‘w649’ � ( � /w � � w id=‘w650’ � tBidG94E � /w � � w id=‘w658’ � ) � /w � � w id=‘w660’ � was � /w �� w id=‘w664’ � principally � /w � � w id=‘w676’ � used � /w � � w id=‘w681’ � because � /w � ....� /body �� ents �� ent id=‘e7’ type=‘prot frag’ sw=‘w630’ ew=‘w644’ � BH3 domain of tBid � /ent �� ent id=‘e8’ type=‘protein’ sw=‘w644’ ew=‘w644’ � tBid � /ent �� ent id=‘e9’ type=‘prot frag’ sw=‘w650’ ew=‘w650’ � tBidG94E � /ent �� ent id=‘e10’ type=‘protein’ sw=‘w650’ ew=‘w650’ eo=‘–4’ � tBid � /ent �

� /ents �

Figure 2: XML Encoding of the Annotation.

Note that the standoff annotation is stored at the
bottom of the annotated file, not in a separate file.
This is principally to simplify file handling issues
which might arise if the annotations were stored
separately. Word tokens are wrapped in w ele-
ments and are assigned unique ids in the id at-
tribute. The tokenisation is created using signif-
icantly improved upgrades of the XML tools de-
scribed in Thompson et al. (1997) and Grover et
al. (2000)1 . The ents element contains all the en-
tities that the annotator has marked and the link be-
tween the ent elements and the words is encoded
with the sw and ew attributes (start word and end
word) which point at word ids. For example, the
protein fragment entity with id e7 starts at the first
character of the word with id w630 and ends at the
last character of the word with id w644.

Our annotation tool and the format for storing
annotations that we have chosen are just one in-
stance of a wide range of possible tools and for-
mats for the NE annotation task. There are a num-
ber of decision points involved in the development
of such tools, some of which come down to a mat-
ter of preference and some of which are conse-
quences of other choices. Examples of annotation
methods which are not primarily based on XML
are GATE (Cunningham et al., 2002) and the anno-
tation graph model of Bird and Liberman (2001).
The GATE system organises annotations in graphs
where the start and end nodes have pointers into
the source document character offsets. This is an
adaptation of the TIPSTER architecture (Grishman,
1997). (The UIMA system from IBM (Ferrucci and
Lally, 2004) also stores annotations in a TIPSTER-
like format.) The annotation graph model en-

1Soon to be available under GPL as LT-XML2 and LT-TTT2
from http://www.ltg.ed.ac.uk/

codes annotations as a directed graph with fielded
records on the arcs and optional time references
on the nodes. This is broadly compatible with our
standoff XML representation and with the TIPSTER
architecture. Our decision to use an annotation
tool which has an underlying XML representation
is partly for compatibility with our NLP processing
methodology where a document is passed through
a pipeline of XML-based components. A second
motivation is the wish to ensure quality of anno-
tation by imposing the constraint that annotations
span complete XML elements. As explained above
and described in more detail in Section 4 the con-
sequence of this approach has been that we have
had to develop a method for recording cases where
the tokenisation is inconsistent with an annotator’s
desired action so that subsequent retokenisation
does not require reannotation.

3 Tokenisation Issues

The most widely known examples of the NER
task are the MUC competitions (Chinchor, 1998)
and the CoNLL 2002 and 2003 shared task (Sang,
2002; Sang and De Meulder, 2003). In both cases
the domain is newspaper text and the entities are
general ones such as person, location, organisation
etc. For this kind of data there are unlikely to be
conflicts between tokenisation and entity mark-up
and a vanilla tokenisation that splits at whitespace
and punctuation is adequate. When dealing with
scientific text and entities which refer to technical
concepts, on the other hand, much more care needs
to be taken with tokenisation.

In the SEER project we collected a corpus of ab-
stracts of radio astronomical papers taken from the
NASA Astrophysics Data System archive, a dig-
ital library for physics, astrophysics, and instru-



mentation2 . We annotated the data for the follow-
ing four entity types:
Instrument-name Names of telescopes and
other measurement instruments, e.g. Supercon-
ducting Tunnel Junction (STJ) camera, Plateau
de Bure Interferometer, Chandra, XMM-Newton
Reflection Grating Spectrometer (RGS), Hubble
Space Telescope.

Source-name Names of celestial objects, e.g.
NGC 7603, 3C 273, BRI 1335-0417, SDSSp
J104433.04-012502.2, PC0953+ 4749.

Source-type Types of objects, e.g. Type II Su-
pernovae (SNe II), radio-loud quasar, type 2 QSO,
starburst galaxies, low-luminosity AGNs.

Spectral-feature Features that can be pointed to
on a spectrum, e.g. Mg II emission, broad emission
lines, radio continuum emission at 1.47 GHz, CO
ladder from (2-1) up to (7-6), non-LTE line.

In the Text Mining programme (TXM) we have
collected a corpus of abstracts and full texts of
biomedical papers taken from PubMed Central,
the U.S. National Institutes of Health (NIH) free
digital archive of biomedical and life sciences
journal literature3 . We have begun to annotate the
data for the following four entity types:
Protein Proteins, both full names and acronyms,
e.g. p70 S6 protein kinase, Kap-1, p130(Cas).

Protein Fragment/Mutant Subparts or mutants
of proteins e.g. ���������
	��
�� , a domain of Bub1,
nup53- � 405-430.

Protein Complex Complexes made up of two
or more proteins e.g. Kap95p/Kap60, DOCK2-
ELMO1, RENT complex. Note that nesting of
protein entities inside complexes may occur.

Fusion Protein Fusions of two proteins or pro-
tein fragments e.g. � -catenin-Lef1, GFP-tubulin,
GFP-EB1. Note that nesting of protein entities in-
side fusions may occur.

In both the astronomy and biomedical domains,
there is a high density of technical and formu-
laic language (e.g. from astronomy: ���������������� ����� 	 � � , 17.8 ! 	"�#�$ kpc, for %'&)( �+*-, , ./(�+*10 , 30 2 Jy/beam). This technical nature means

2http://adsabs.harvard.edu/preprint_
service.html

3http://www.pubmedcentral.nih.gov/

that the vanilla tokenisation style that was pre-
viously adequate for MUC-style NE annotation in
generic newspaper text is no longer guaranteed to
be a good basis for standoff NE annotation because
there will inevitably be conflicts between the way
the tokenisation segments the text and the strings
that the annotators want to select. In the remainder
of this section we illustrate this point with exam-
ples from both domains.

3.1 Tokenisation of Astronomy Texts

In our tokenisation of the astronomy data, we ini-
tially assumed a vanilla MUC-style tokenisation
which gives strong weight to whitespace as a token
delimiter. This resulted in ‘words’ such Si[I] 3 0.4
and I([OIII]) being treated as single tokens. Re-
tokenisation was required because the annotators
wanted to highlight Si[I] and [OIII] as entities of
type Spectral-feature. We also initially adopted
the practice of treating hyphenated words as single
tokens so that examples such as AGN-dominated
in the Source-type entity AGN-dominated NELGs
were treated as one token. In this case the an-
notator wanted to mark AGN as an embedded
Source-type entity but was unable to do so. A
similar problem occurred with the Spectral-feature
BAL embedded in the Source-type entity mini-BAL
quasar.

Examples such as these required us to reto-
kenise the astronomy corpus. We then performed
a one-off, ad hoc merger of the annotations that
had already been created with the newly tokenised
version and then asked the annotators to revisit the
examples that they had previously been unable to
annotate correctly.

3.2 Tokenisation of Biomedical Texts

Our starting point for tokenisation of biomedical
text was to use the finer grained tokenisation that
we had developed for the astronomy data in pref-
erence to a vanilla MUC-style tokenisation. For
the most part this resulted in a useful tokenisa-
tion; for example, rules to split at hyphens and
slashes resulted in a proper tokenisation of protein
complexes such as Kap95p/Kap60 and DOCK2-
ELMO1 which allowed for the correct annotation
of both the complexes and the proteins embed-
ded within them. However, a slash did not al-
ways cause a token split and in cases such as
ERK 1/2 the 1/2 was treated as one token which
prevented the annotator from marking up ERK
1 as a protein. A catch-all rule for non-ASCII



� body �
.... � w id=‘w609’ � glutamic � /w � � w id=‘w618’ � acid � /w � � w id=‘w623’ � in � /w � � w id=‘w626’ � the � /w �� w id=‘w630’ � BH3 � /w � � w id=‘w634’ � domain � /w � � w id=‘w641’ � of � /w � � w id=‘w644’ � tBid � /w �� w id=‘w649’ � ( � /w � � w id=‘w650’ � tBid � /w � � w id=‘w654’ � G94E � /w � � w id=‘w658’ � ) � /w �� w id=‘w660’ � was � /w � � w id=‘w664’ � principally � /w � � w id=‘w676’ � used � /w �� w id=‘w681’ � because � /w � ....� /body �� ents �� ent id=‘e7’ type=‘prot frag’ sw=‘w630’ ew=‘w644’ � BH3 domain of tBid � /ent �� ent id=‘e8’ type=‘protein’ sw=‘w644’ ew=‘w644’ � tBid � /ent �� ent id=‘e9’ type=‘prot frag’ sw=‘w650’ ew=‘w654’ � tBidG94E � /ent �� ent id=‘e10’ type=‘protein’ sw=‘w650’ ew=‘w650’ � tBid � /ent �

� /ents �

Figure 3: Annotated File after Retokenisation.

characters meant that sequences containing Greek
characters became single tokens when sometimes
they should have been split. For example, in
the string PKC � K380R the annotator wanted to
mark PKC as a protein. Material in parenthe-
ses when not preceded by white space was not
split off so that in examples such as coilin(C214)
and Cdt1(193-447) the annotators were not able to
mark up just the material before the left parenthe-
sis. Sequences of numeric and (possibly mixed-
case) alphabetic characters were treated as single
tokens, e.g., tBidG94E (see Figure 2), GAL4AD,
p53TAD—in these cases the annotators wanted to
mark up an initial subpart (tBid, GAL4, p53).

4 Representing Conflict in XML and
Retokenisation

Some of the tokenisation problems highlighted in
the previous section arose because the NLP spe-
cialist implementing the tokenisation rules was not
an expert in either of the two domains. Many ini-
tial problems could have been avoided by a phase
of consultation with the astronomy and biomedi-
cal domain experts. However, because they are not
NLP experts, it would have been time-consuming
to explain the NLP issues to them.

Another approach could have been to use ex-
tremely fine-grained tokenisation perhaps splitting
tokens on every change in character type.

Another way in which many of the problems
could have been avoided might have been to use
extremely fine-grained tokenisation perhaps split-
ting tokens on every change in character type. This
would provide a strong degree of harmony be-
tween tokenisation and annotation but would be
inadvisable for two reasons: firstly, segmentation
into many small tokens would be likely to slow an-

notation down as well as give rise to more acciden-
tal mis-annotations because the annotators would
need to drag across more tokens; secondly, while
larger numbers of smaller tokens may be useful
for annotation, they are not necessarily appropri-
ate for many subsequent layers of linguistic pro-
cessing (see Section 5).

The practical reality is that the answer to the
question of what is the ‘right’ tokenisation is far
from obvious and that what is right for one level
of processing may be wrong for another. We an-
ticipate that we might tune the tokenisation com-
ponent a number of times before it becomes fixed
in its final state and we need a framework that per-
mits us this degree of freedom to experiment with-
out jeopardising the annotation work that has al-
ready been completed.

Our response to the conflict between tokenisa-
tion and annotation is to extend our XML-based
standoff annotation tool so that it can be used by
the annotators to record the places where the cur-
rent tokenisation does not allow them to select a
string that they want to annotate. In these cases
they can override the default behaviour of the an-
notation tool and select exactly the string they are
interested in. When this happens, the standoff an-
notation points to the word where the entity starts
and the word where it ends as usual, but it also
records start and end character offsets which show
exactly which characters the annotator included
as part of the entity. The protein entity e10 in
the example in Figure 2 illustrates this technique:
the start and end word attributes sw and ew in-
dicate that the entity encompasses the single to-
ken tBidG94E but the attribute eo (end offset) in-
dicates that the annotator selected only the string
tBid. Note that the annotator also correctly anno-



tated the entire string tBidG94E as a protein frag-
ment. The start and end character offset notation
provides a subset of the range descriptions defined
in the XPointer draft specification4 .

With this method of storing the annotators’ de-
cisions, it is now possible to update the tokeni-
sation component and retokenise the data at any
point during the annotation cycle without risk of
losing completed annotation and without needing
to ask annotators to revisit previous work. We
have developed a program which takes as input
the original annotated document plus a newly to-
kenised but unannotated version of it and which
causes the correct annotation to be recorded in
the retokenised version. Where the retokenisation
accords with the annotators’ needs there will be
a decrease in the incidence of start and end off-
set attributes. Figure 3 shows the output of reto-
kenisation on our example. The current version
of the TXM project corpus contains 38,403 sen-
tences which have been annotated for the four pro-
tein named entities described above (50,049 entity
annotations). With the initial tokenisation (Tok1)
there are 1,106,279 tokens and for 719 of the enti-
ties the annotators have used start and/or end off-
sets to override the tokenisation. We have de-
fined a second, finer-grained tokenisation (Tok2)
and used our retokenisation program to retokenise
the corpus. This second version of the corpus con-
tains 1,185,845 tokens and the number of entity
annotations which conflict with the new tokeni-
sation is reduced to 99. Some of these remain-
ing cases reflect annotator errors while some are
a consequence of the retokenisation still not being
fine-grained enough. When using the annotations
for training or testing, we still need a strategy for
dealing with the annotations that are not consis-
tent with our final automatic tokenisation routine
(in our case, the 99 entities). We can systemati-
cally ignore the annotations or adjust them to the
nearest token boundary. The important point is we
we have recorded the mismatch between the to-
kenisation and the desired annotation and we have
options for dealing with the discrepancy.

5 Tokenisation for Multiple Components

So far we have discussed the problem of find-
ing the correct level of granularity of tokenisa-
tion purely in terms of obtaining the optimal basis
for NER annotation. However, the reason for ob-

4http://www.w3.org/TR/xptr-xpointer/

taining annotated data is to provide training ma-
terial for NLP components which will be put to-
gether in a processing pipeline to perform infor-
mation extraction. Given that statistically trained
components such as part-of-speech (POS) taggers
and NER taggers use word tokens as the fundamen-
tal unit over which they operate, their needs must
be taken into consideration when deciding on an
appropriate granularity for tokenisation. The im-
plicit assumption here is that there can only be one
layer of tokenisation available to all components
and that this is the same layer as is used at the
annotation stage. Thus, if annotation requires the
tokenisation to be relatively fine-grained, this will
have implications for POS and NER tagging. For
example, a POS tagger trained on a more conven-
tionally tokenised dataset might have no problem
assigning a propernoun tag to Met-tRNA/eIF2 � in

... and facilitates loading of the Met-
tRNA/eIF2 � GTP ternary complex ...

however, it would find it harder to assign tags to
members of the 10 token sequence M et - t RNA
/ e IF 2 � .

Similarly, a statistical NER tagger typically uses
information about left and right context looking at
a number of tokens (typically one or two) on either
side. With a very fine-grained tokenisation, this
representation of context will potentially be less
informative as it might contain less actual context.
For example, in the excerpt

... using a Tet-on LMP1 HNE2 cell
line ...

assuming a fine-grained tokenisation, the pair of
tokens LMP and 1 make up a protein entity. The
left context would be the sequence using a Tet
- on and the right context would be HNE 2 cell
line. Depending on the size of window used to
capture context this may or may not provide useful
information.

To demonstrate the effect that a finer-grained
tokenisation can have on POS and NER tagging,
we performed a series of experiments on the NER
annotated data provided for the Coling BioNLP
evaluation (Kim et al., 2004), which was derived
from the GENIA corpus (Kim et al., 2003). (The
BioNLP data is annotated with five entities, pro-
tein, DNA, RNA, cell type and cell line.) We
trained the C&C maximum entropy tagger (Curran
and Clark, 2003) using default settings to obtain



Orig Tok1 Tok2
training # sentences 18,546
eval # sentences 3,856
training # tokens 492,465 540,046 578,661
eval # tokens 101,028 110, 352 117, 950
Precision 65.14% 62.36% 61.39%
Recall 67.35% 64.24% 63.24%
F1 66.23% 63.27% 62.32%

Table 1: NER Results for Different Tokenisations
of the BioNLP corpus

NER models for the original tokenisation (Orig), a
retokenisation using the first TXM tokeniser (Tok1)
and a retokenisation using the finer-grained second
TXM tokeniser (Tok2) (see Section 4). In all exper-
iments we discarded the original POS tags and per-
formed POS tagging using the C&C tagger trained
on the MedPost data (Smith et al., 2004). Table 1
shows precision, recall and f-score for the NER
tagger trained and tested on these three tokenisa-
tions and it can be seen that performance drops as
tokenisation becomes more fine-grained.

The results of these experiments indicate that
care needs to be taken to achieve a sensible bal-
ance between the needs of the annotation and the
needs of NLP modules. We do not believe, how-
ever, that the results demonstrate that the less
fine-grained original tokenisation is necessarily
the best. The experiments are a measure of the
combined performance of the POS tagger and the
NER tagger and the tokenisation expectations of
the POS tagger must also have an impact. We
used a POS tagger trained on material whose own
tokenisation most closely resembles the tokenisa-
tion of Orig (hyphenated words are not split in the
MedPost training data) and it is likely that the low
results for Tok1 and Tok2 are partly due to the to-
kenisation mismatch between training and testing
material for the POS tagger. In addition, the NER
tagger was used with default settings for all runs
where the left and right context is at most two to-
kens. We might expect an improvement in per-
formance for Tok1 and Tok2 if the NER tagger was
run with larger context windows. The overall mes-
sage here, therefore, is that the needs of all proces-
sors must be taken into account when searching for
an optimal tokenisation and developers should be-
ware of bolting together components which have
different expectations of the tokenisation—ideally
each should be tuned to the same tokenisation.

There is a further reason why the original to-
kenisation of the BioNLP data works so well.

During our experiments with the original data we
observed that splitting at hyphens was normally
not done (e.g. monocyte-specific is one token) but
wherever an entity was part of a hyphenated word
then it was split (e.g. IL-2 -independent where IL-
2 is marked as a protein.) The context of a fol-
lowing word which begins with a hyphen is thus a
very clear indicator of entityhood. Although this
will improve scores where the training and test-
ing data are marked in the same way, it gives an
unrealistic estimate of actual performance on un-
seen data where we would not expect the hyphen-
ation strategy of an automatic tokeniser to be de-
pendent on prior knowledge of where the entities
are. To demonstrate that the Orig NER model does
not perform well on differently tokenised data, we
tested it on the Tok1 tokenised evaluation set and
obtained an f-score of 55.64%.

6 Conclusion

In this paper we have discussed the fact that to-
kenisation, especially of scientific text, is not nec-
essarily a component that can be got right first
time. In the context of annotation tools, especially
where the tool makes reference to the tokenisation
layer as with XML standoff, there is an interdepen-
dence between tokenisation and annotation. It is
not practical to have annotators revisit their work
every time the tokenisation component changes
and so we have developed a tool that allows an-
notators to override tokenisation where necessary.
The annotators’ actions are recorded in the XML
format in such a way that we can retokenise the
corpus and still faithfully reproduce the original
annotation. We have provided very specific moti-
vation for our approach from our annotation of the
astronomy and biomedical domains but we hope
that this method might be taken up as a standard
elsewhere as it would provide benefits when shar-
ing corpora—a corpus annotated in this way can
be used by a third party and possibly retokenised
by them to suit their needs. We also looked at
the interdependence between the tokenisation used
for annotation and the tokenisation requirements
of POS taggers and NER taggers. We showed that
it is important to provide a consistent tokenisation
throughout and that experimentation is required
before the optimal balance can be found. Our re-
tokenisation tools support just this kind of experi-
mentation
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