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Abstract. We describe experiments in building a classifier which determines the rhetor-
ical status of sentences. The research is part of a text summarisation project for the
legal domain and we use a newly compiled and annotated corpus of judgments of the
UK House of Lords. Rhetorical role classification is an initial step which provides
input to the sentence selection component of the system. We report results from ex-
periments with four classifiers from the Weka package (C4.5, naı̈ve Bayes, Winnow
and SVMs). We also report results using maximum entropy models both in a standard
classification framework and in a sequence labelling framework. The SVM classifier
and the maximum entropy sequence tagger yield the most promising results.

1 Introduction

In the SUM project we are building a system for summarising legal judgments that is generic
and portable while maintaining a mechanism to account for the rhetorical structure of the ar-
gumentation of a case. The importance of summarisation in the legal domain stems from the
role that precedents play in common law. Already, a number of content providers are provid-
ing access to manual summarisations of legal judgments. An automatic system would enable
immediate access to preliminary summaries, and serve as an assisting technology in man-
ual summarisation. Automatic summaries might also be incorporated to provide dynamic,
customised content in information retrieval systems.

For example, consider a case database where the user queries using key words or natural
language and gets back a list of summaries of possible precedent-setting rulings including an
indication of the decision. Alternatively, the whole document could be treated as a query in
which case a system could actively search for and summarise documents similar to that which
the user is currently viewing. These kinds of systems have great utility both for learning law
and especially as a research aid for lawyers.

In Section 2 we describe the approach we are taking. We also describe the corpus of legal
judgments that we have gathered and the manual annotation of rhetorical role classification
that we have performed. In Section 3 we describe the XML-based automatic linguistic analysis
of the corpus which provides features for the classifier. Section 4 contains an overview of
the feature sets that we use for our experiments and the results from our experiments with
four Weka classifiers. In Section 5 we report results for a maximum entropy classifier before
investigating treating the task as a sequence labelling problem. Finally, in Section 6, we draw
conclusions and outline directions for future work.
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2 Background

2.1 Sentence Extraction with Rhetorical Status Information

In this paper we report on a set of experiments to classify sentences for rhetorical status
using a wide range of machine learning techniques. The task of classifying sentences forms
part of a sentence extraction-based automatic summarisation system in the legal domain. The
experiments described are part of an ongoing endeavour to determine the best classification
techniques and the best feature sets for the task.

In the SUM project we are exploring methods for generating flexible summaries of legal
documents. Our approach to summarisation is described in detail in [11] and takes as a point
of departure the work of Teufel and Moens [28, 26, 27] (henceforth T&M). We have chosen
to work with law reports in part because the existence of manual summaries means that we
will have evaluation material for the final summarisation system.

The T&M approach is an instance of what is known as the text extraction method of
summarisation. In this approach a summary typically consists of sentences selected from the
source text, with some smoothing (e.g reordering, anaphora resolution) to increase the coher-
ence between them. Following T&M, we go beyond simple sentence selection and classify
source sentences according to their rhetorical status (e.g. a description of background facts in
the case, a reference to a point of law, etc.). With sentences classified in this manner, different
kinds of summaries can be generated with prominence given to particular kinds of sentence.

2.2 The HOLJ Corpus

We have gathered a corpus of judgments of the House of Lords (the HOLJ corpus).1 Each
document contains a header providing structured information (e.g., respondent, appellant,
date of hearing), followed by a sequence of (usually five) Law Lords’ judgments consisting
of free-running text, at least one of which is a substantial speech. Typically this will start with
a statement of how the case came before the court, move on to a recapitulation of the facts,
discuss one or more points of law, and then offer a ruling.

The corpus consists of 188 documents from the years 2001–2003. For 153 of these, man-
ually created summaries are available and will be used for system evaluation.2 The total
number of words in the free text parts of the corpus is 2,887,037 and the total number of
sentences is 98,645. The average sentence length is approximately 29 words. A document
contains an average of 525 sentences while an individual Law Lord’s judgment contains an
average of 105 sentences.

The raw HTML documents are processed through a sequence of modules which convert to
XML and add layers of linguistic annotation (see Section 3); an individual Law Lord’s judg-
ment is encoded as a LORD element. All annotation is computed automatically except for
manual annotation of sentences for their rhetorical status. The human annotation of rhetor-
ical roles is performed on the documents after the tokenisation component has performed
sentence boundary disambiguation. This annotation is work in progress and so far we have
around 70 manually annotated documents. The experiments reported here were conducted
using 40 of these. This subset is similar in size to the corpus of 80 academic papers reported
in Teufel and Moens [28]. Our corpus contains 290,793 words and 10,169 sentences while
the T&M corpus contains 285,934 words and 12,188 sentences. Note that although our corpus

1http://www.parliament.uk/judicial_work/judicial_work.cfm
2http://www.lawreports.co.uk/
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Label Freq. Description

FACT 862 Recounts the events or circumstances giving to legal proceedings.
(8.5%) E.g. On analysis the package was found to contain 152 milligrams

of heroin at 100% purity.
PROCEEDINGS 2434 Describes legal proceedings taken in the lower courts.

(24%) E.g. After hearing much evidence, Her Honour Judge Sander made
findings of fact on 1 November 2000.

BACKGROUND 2813 Direct quotation or citation of source of law material.
(27.5%) E.g. Article 5 provides in paragraph 1 that a group of producers

may apply for registration . . .
FRAMING 2309 Part of the Law Lord’s argumentation.

(23%) E.g. In my opinion, however, the present case cannot be brought
within the principle applied by the majority in the Wells case.

DISPOSAL 935 Credits or discredits a claim or previous ruling.
(9%) E.g. I would allow the appeal and restore the order of the

Divisional Court.
TEXTUAL 768 Has to do with the structure of the document or with things

(7.5%) unrelated to a case.
E.g. First, I should refer to the facts that have given rise to this
litigation.

OTHER 48 Does not fit any of the above categories.
(0.5%) E.g. Here, as a matter of legal policy, the position seems to me straightforward

Table 1: Rhetorical Annotation Scheme for Legal Judgments

contains marginally more words, the T&M corpus has a shorter average sentence length and
thus contains more sentences.

The rhetorical roles that it is appropriate to assign to sentences vary from domain to do-
main and reflect the argumentative structure of the texts. Teufel and Moens [28] describe a
set of labels which reflect regularities in the argumentative structure of research articles fol-
lowing from the author’s communicative goals. For scientific articles the role labels reflect
such things as the the goals of the paper, sentences describing generally accepted scientific
background, etc. For our legal domain, the author’s primary communicative goal is to con-
vince his peers that his position is legally sound, having considered the case with regard to
all relevant points of law. We have analysed the structure of typical documents in our domain
and derived from this seven rhetorical role categories, illustrated in Table 1. The second col-
umn shows the frequency of occurrence of each label in the manually annotated subset of
the corpus. Apart from the OTHER category, the most infrequently assigned category is TEX-
TUAL while the most frequent is BACKGROUND. In general, the distribution across categories
is more uniform than that of the T&M labels: Teufel and Moens [28] report that their most
frequent category (OWN) is assigned to 67% of sentences in their corpus while three other
labels (BASIS, TEXTUAL and AIM) are each assigned to only 2% of sentences.

The 40 documents in our manually annotated subset were annotated by two annotators
using guidelines which were developed by one of the authors, one of the annotators and a law
professional. Eleven files were doubly annotated in order to measure inter-annotator agree-
ment. We used the kappa coefficient of agreement as a measure of reliability. This showed
that the human annotators distinguish the seven categories with a reproducibility of K=.83
(N=1,955, k=2; where K is the kappa co-efficient, N is the number of sentences and k is the
number of annotators). This is slightly higher than that reported by T&M and above the .80
mark which Krippendorf [13] suggests is the cut-off for good reliability.
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Figure 1: HOLJ Processing Stages

3 Linguistic Analysis

One of the goals of the SUM project is to create an annotated corpus in the legal domain
which will be available to other researchers. With this aim in mind we have used the HOLXML

format for the corpus and we encode all the results of linguistic processing as XML annota-
tions. Figure 1 shows the broad details of the automatic processing that we perform, with the
processing divided into an initial tokenisation module and a later linguistic annotation mod-
ule. The architecture of our system is one where a range of NLP tools is used in a modular,
pipelined way to add linguistic knowledge to the XML document markup. The motivation for
the module that performs further linguistic analysis is to compute information to be used to
provide features for the sentence classifier. However, the information we compute is general
purpose, making the data useful for a range of research activities.

In the tokenisation module we convert from the source HTML to HOLXML and then pass
the data through a sequence of calls to a variety of XML-based tools from the LT TTT and
LT XML toolsets [9, 29]. These include fsgmatch, a general purpose transducer which pro-
cesses an input stream and adds annotations using hand-written rules and ltpos, a statistical
combined part-of-speech (POS) tagger and sentence boundary disambiguation module [18].

The first step in the linguistic analysis module lemmatises the inflected words using Min-
nen et al.’s [19] morpha lemmatiser. The next stage, described in Figure 1 as Named Entity
Recognition, is in fact a more complex layering of two kinds of named entity recognition.
The documents in our domain contain standard kinds of entities such as person, organisation,
location and date. However, they also contain entities which are are specific to the domain.
Table 2 shows examples of the entities we have marked up in the corpus (noun groups (NG)
with specific type and subtype attributes). The table shows both domain-specific entities such
as courts, judges, acts and judgments and non-domain-specific entity types. To identify the
domain-specific ones we use hand-crafted LT TTT rules, while for the non-domain-specific
ones we use the C&C named entity tagger [4] trained on the MUC7 [1] data set.

The next stage in the linguistic analysis module performs noun group and verb group
chunking using fsgmatch with specialised hand-written rule sets. The noun group and verb
group mark-up plus POS tags provide the relevant features for the next processing step. In [8]
we showed that information about the main verb group of the sentence is likely to provide
clues as to rhetorical status (e.g. present tense tends to correlate more highly with BACK-
GROUND). In order to find the main verb group of a sentence, however, we need to establish
its clause structure. We do this with a maximum entropy clause identifier [10] built using the
CoNLL-2001 shared task data [25].

The final stages of linguistic processing use hand-written LT TTT components to com-
pute features of verb and noun groups. For all verb groups, attributes encoding tense, aspect,
modality and negation are added to the mark-up: for example, might not have been brought
is analysed as � VG tense=‘pres’, aspect=‘perf’, voice=‘pass’, modal=‘yes’, neg=‘yes’ � . In ad-
dition, subject noun groups are identified and lemma information from the head noun of the
subject and the head verb of the verb group are propagated to the verb group attribute list.
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type=‘enamex-pers’ subtype=‘committee-lord’ Lord Rodger of Earlsferry, Lord Hutton
type=‘caseent’ subtype=‘appellant’ Northern Ireland Human Rights Commission
type=‘caseent’ subtype=‘respondent’ URATEMP VENTURES LIMITED

type=‘enamex-pers’ subtype=‘judge’ Collins J, Potter and Hale LJJ
type=‘enamex-org’ subtype=‘court’ European Court of Justice, Bristol County Court
type=‘legal-ent’ subtype=‘act’ Value Added Tax Act 1994, Adoption Act 1976
type=‘legal-ent’ subtype=‘section’ section 18(1)(a), para 3.1
type=‘legal-ent’ subtype=‘judgment’ Turner J [1996] STC 1469

type=‘enamex-loc’ subtype=‘fromCC’ Oakdene Road, Kuwait Airport
type=‘enamex-pers’ subtype=‘fromCC’ Irfan Choudhry, John MacDermott
type=‘enamex-org’ subtype=‘fromCC’ Powergen, Grayan Building Services Ltd

Table 2: Named Entities in the Corpus

4 Initial Classification Experiments

4.1 Feature Sets

The feature set described in Teufel and Moens [28] includes many of the features which are
typically used in sentence extraction approaches to automatic summarisation as well as cer-
tain other features developed specifically for rhetorical role classification. Briefly, the T&M

feature set includes such features as: location of a sentence within the document and its sub-
sections and paragraphs; sentence length; whether the sentence contains words from the title;
whether it contains significant terms as determined by the information retrieval metric tf*idf ;
whether it contains a citation; linguistic features of the first finite verb; and cue phrases (de-
scribed as meta-discourse features in [28]). The features that we have been experimenting
with for the HOLJ corpus are broadly similar to those used by T&M.

Location. For sentence extraction in the news domain, sentence location is an important
feature and, though it is less dominant for T&M’s scientific article domain, they did find it
to be a useful indicator. T&M calculate the position of a sentence relative to segments of the
document as well as sections and paragraphs. In our system, location is calculated relative
to the containing paragraph and LORD element and is encoded in six integer-valued features:
paragraph number after the beginning of the LORD element, paragraph number before the end
of the LORD, sentence number after the beginning of the LORD element, sentence number be-
fore the end of the LORD, sentence number after the beginning of the paragraph, and sentence
number before the end of the paragraph.

Thematic Words. This feature is intended to capture the extent to which a sentence con-
tains terms which are significant, or thematic, in the document. The thematic strength of a
sentence is calculated as a function of the tf*idf measure on words (tf =‘term frequency’,
idf =‘inverse document frequency’): words which occur frequently in the document but rarely
in the corpus as a whole have a high tf*idf score. The thematic words feature in Teufel and
Moens [28] records whether a sentence contains one or more of the 18 highest scoring words.
In our system we summarise the thematic content of a sentence with a real-valued thematic
sentence feature, whose value is the average tf*idf score of the sentence’s terms.

Sentence Length. In T&M, this feature describes sentences as short or long depending
on whether they are less than or more than twelve words in length. We implement an integer-
valued sentence length feature which is a count of the number of tokens in the sentence.

Quotation. This feature, which does not have a direct counterpart in T&M, encodes the
percentage of sentence tokens inside an in-line quote and whether or not the sentence is inside
a block quote.
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C4.5 NB Winnow SVM
I C I C I C I C

Cue Phrases 47.8 47.8 39.6 39.6 31.1 31.1 52.1 52.1
Location 65.4 54.9 34.9 47.5 34.2 40.2 35.9 55.0
Entities 35.5 54.4 32.6 48.8 26.0 40.2 33.1 56.5
Sent. Length 27.2 55.1 20.0 49.1 27.0 40.4 12.0 56.8
Quotations 28.4 59.5 29.7 51.8 23.3 41.1 27.8 60.2
Them. Words 30.4 59.7 21.2 51.7 25.7 41.4 12.0 60.6
Baseline 12.0

Table 3: Micro-averaged F-score results for rhetorical classification

Entities. T&M do not incorporate full-scale Named Entity Recognition in their system,
though they do have a feature reflecting the presence or absence of citations. We recognise a
wide range of named entities and generate binary-valued entity type features which take the
value 0 or 1 indicating the presence or absence of a particular entity type in the sentence.

Cue Phrases. The term ‘cue phrase’ covers the kinds of stock phrases which are fre-
quently good indicators of rhetorical status (e.g. phrases such as The aim of this study in the
scientific article domain and It seems to me that in the HOLJ domain). T&M invested a con-
siderable amount of effort in compiling lists of such cue phrases and building hand-crafted
lexicons where the cue phrases are assigned to one of a number of fixed categories. A pri-
mary aim of the current research is to investigate whether the effects of T&M’s cue phrase
features can be achieved using automatically computable linguistic features. If they can, then
this helps to relieve the burden involved in porting systems such as these to new domains.
Our preliminary cue phrase feature set includes syntactic features of the main verb (voice,
tense, aspect, modality, negation), which we have shown to be correlated with rhetorical sta-
tus [7]. We also use features indicating sentence initial part-of-speech and sentence initial
word features to roughly approximate formulaic expressions which are sentence-level ad-
verbial or prepositional phrases. Subject features include the head lemma, entity type, and
entity subtype. These features approximate the hand-coded agent features of T&M. A main
verb lemma feature simulates T&M’s type of action and a feature encoding the part-of-speech
after the main verb is meant to capture basic subcategorisation information.

4.2 Weka Results and Discussion

We ran experiments with four classifiers in the Weka package using default parameter set-
tings: an implementation of Quinlan’s [23] decision tree algorithm (C4.5); an implementa-
tion of John and Langley’s [12] naı̈ve Bayes algorithm incorporating statistical methods for
nonparametric density estimation of continuous variables (NB); an implementation of Lit-
tlestone’s [15] algorithm for mistake-driven learning of a linear separator (Winnow); and an
implementation of Platt’s [22] sequential minimal optimization algorithm for training a sup-
port vector classifier using polynomial kernels (SVM). All accept continuous features as input
except Winnow. In order to evaluate the Winnow algorithm, we discretise continuous features
using the Weka filter based on Fayyad and Irani’s [6] MDL method for discretisation.

Micro-averaged F-scores for each classifier are presented in Table 3.3 The I columns
contain individual scores for each feature type and the C columns contain scores which in-

3Micro-averaging weights categories by their frequency in the corpus. By contrast, macro-averaging puts
equal weight on each class regardless of how sparsely populated it might be.
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corporate features incrementally. C4.5 performs very well (65.4) with location features only,
but is not able to successfully incorporate other features for improved performance.4 SVMs
perform second best (60.6) with all features. NB is next (51.8) with all but thematic word
features. Winnow has the poorest performance with all features giving a micro-averaged F-
score of 41.4. For the most part, these scores are considerably lower than the micro-averaged
F-score of 72.0 achieved by T&M. However, the picture is slightly different when we con-
sider the systems in the context of their respective baselines. Teufel and Moens [28] report a
macro-averaged F-score of 11 for always assigning the most frequent rhetorical class, sim-
ilar to the simple baseline they use in earlier work. This score is 54 when micro-averaged
because of the skewed distribution of rhetorical categories (67% of sentences fall into the
most frequent category). With the more uniform distribution of rhetorical categories in the
HOLJ corpus, we get baseline numbers of 6.2 (macro-averaged) and 12.0 (micro-averaged).
Thus, the actual per-sentence (micro-averaged) F-score improvement is relatively high, with
our system achieving an improvement of between 29.4 and 53.4 points (to 41.4 and 65.4 re-
spectively for the optimal Winnow and C4.5 feature sets) where the T&M system achieves an
improvement of 18 points. Like T&M, our cue phrase features are the most successful feature
subset (excepting C4.5 decision trees). We find these results very encouraging given that we
have not invested any time in developing cue phrase features but rather have attempted to
simulate these through fully automatic, largely domain-independent linguistic information.

5 Experiments with Maximum Entropy and Sequence Modelling

5.1 Maximum Entropy Classification

Maximum entropy (ME) modelling is another machine learning method which allows the
integration of diverse information sources. Though ME approaches are not as good as other
machine learning approaches (e.g. vector methods) at modelling the interaction between fea-
tures, they have proved highly effective in natural language tasks with large, noisy feature
sets such as text categorisation, part-of-speech tagging, and named entity recognition. We
use a publically available version of an ME estimation toolkit5 which contains C++ imple-
mentations of the LMVM [16] and GIS [5] estimation algorithms.6 As with Winnow, the
Weka implementation of Fayyad and Irani’s [6] MDL algorithm is used to discretise numeric
features. Individual and cumulative feature results are found in the MXT column of Table 4.7

Although ME approaches have proved very successful for natural language tasks, they are
not in common use in the text summarisation community. Teufel and Moens [28] state simply
that they experimented with maximum entropy but it did not show significant improvement
over naı̈ve Bayes. We hypothesise that this is due to the very carefully constructed feature set
optimised for naı̈ve Bayes. Results from Osborne [21], where maximum entropy was shown
to perform much better than naı̈ve Bayes when features are highly dependent, support this hy-
pothesis. Our results (Table 4) also support this hypothesis. The feature subset containing the
most inter-dependencies in our system is that which uses automatically generated linguistic
information to represent cue phrase information. Comparing scores for this feature set, we see
that the ME classifier performs nearly 10 points better than naı̈ve Bayes. Maximum entropy

4Due to this non-monotonicity and due to the opacity of the highly complex model produced from location
features, we consider C4.5 unreliable for our task.

5Written by Zhang Le: http://www.nlplab.cn/zhangle/maxent_toolkit.html
6All final results presented in sections 5.1 and 5.2 use GIS parameter estimation.
7Note that while the Weka experiments use 10-fold cross-validation, the maximum entropy experiments

use per-Lord cross-validation in anticipation of the sequencing experiments where individual Lord’s speeches
should remain intact.
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MXT PL SEQ
I C I C I C

Cue Phrases 48.1 48.1 51.6 51.6 52.6 52.6
Location 42.5 51.9 38.0 54.0 39.5 56.2
Entities 35.8 53.7 32.0 55.2 35.5 56.5
Sent. Length 21.5 54.0 28.6 56.4 27.9 58.1
Quotations 25.7 57.3 28.5 57.7 30.5 61.2
Them. Words 27.7 57.5 26.7 58.1 31.7 60.8
Baseline 12.0

Table 4: Maximum entropy F-score results for rhetorical classification.

outperforms the other classifiers as well for most feature types, falling short only of the C4.5
decision tree on location features and the SVM on cue phrase and quotation features, though
the cumulative numbers indicate that it is not integrating diverse information as well as the
SVM does. We believe this is due to the SVM being better able to model feature interactions.
Explicitly conjoining features in maximum entropy will allow us to test this.

5.2 Sequence Modelling

Order is a general characteristic of natural languages that distinguishes many problems from
classification tasks in other domains.8 For example, when predicting a word’s part-of-speech,
a classifier should consider the surrounding labels to approximate syntactic constraints. Like-
wise, it is important in named entity recognition to consider the context of boundary and
entity type predictions. Order is also implicit in sentence-level tasks where label contexts
capture discourse constraints. The rhetorical status classification task falls in this category
since sentences of the same class tend to cluster together in blocks.

There are a number of approaches to sequence modelling in the literature. Hidden Markov
models have been the standard for speech applications for some time and have also been
applied to word-level tasks such as named entity recognition and shallow parsing, e.g. [30,
20]. Maximum entropy Markov models (MEMMs) and conditional random fields (CRFs)
have also been proposed for sequence modelling. In this work, we implement the sequence
modelling approach used by Ratnaparkhi [24] for part-of-speech tagging and also used by
Curran and Clark [3, 4] for supertagging and named entity recognition. Here, the conditional
probability of a tag sequence y1 ��� yn given a Lord’s speech s1 ��� sn is approximated as:

p
�
y1 ��� yn � s1 ��� sn ���

n

∏
i � 1

p
�
yi � xi � (1)

where p
�
yi � xi � is the normalised probability at sentence i of a tag yi given the context xi.

p
�
yi � xi � has the following log-linear form:

p
�
yi � xi �
	 1

Z
�
xi � exp

�
∑

j
λ j f j

�
xi � yi ��� (2)

where the f j include the features described in section 4.1 and features defined in terms of the
previous two tags. This framework is very similar to that of MEMMs, a graphical framework

8The biomedical domain is a notable exception. Order is also implicit in gene sequencing tasks, for instance.
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that separates transition functions for different source states [17]. However, Ratnaparkhi’s
model allows arbitrary state-transition structures, and because it combines all of the different
source states into a single exponential model, it is likely to cope better with sparse data.

Table 4 gives the results for sequencing (SEQ) as well as results for a model incorporating
previous labels but no search (PL) and results on the original feature set (MXT). Sequence
modelling provides significant improvements over the classifier scores, the optimal configu-
ration achieving an F-score gain of 3.7 points over the optimal classification configuration.
Further improvements might be be gained by using a search that incorporates following pre-
dictions as well as previous predictions or a re-ranking method, e.g. [2].

6 Conclusions and Future Work

We have presented classifier experiments in the context of summarisation of legal texts, for
which we are developing a new corpus of UK House of Lords judgments with detailed lin-
guistic markup in addition to rhetorical status annotation. We have compared a number of
machine learning algorithms that have previously shown good performance on natural lan-
guage tasks. Among these, support vector machines and maximum entropy models prove to
be the best suited to our task. We presented a sequence modelling approach to a sentence-level
natural language task. This improved performance significantly over the basic classifier.

While generic linguistic analysis tools (e.g. part-of-speech tagging, chunking) are easy
to come by in many languages, detailed named entity recognition may not be available for a
given new domain. We have invested a considerable amount of time in writing NER rules by
hand for the HOLJ domain. Effective bootstrapping methods for NER will make our linguistic
features fully domain-independent for domains and languages where linguistic analysis tools
are available. In current research, we are exploring the use of active learning to minimise
the time and labour needed to create state-of-the-art systems for named entity recognition in
novel domains such as astronomy and law.

Finally, on the system level, we are currently developing the sentence extraction compo-
nent. The core of this component will be a classifier that predicts whether or not a sentence
is a good summary sentence. Once this is finished, we will have the building blocks for our
summaries. Content will initially be structured using rhetorical templates. We will then be
ready to carry out user studies to assess the quality and utility of our system’s output and
compare our summary text structuring with other methods such as Lapata’s [14] probabilistic
approach.
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