Selective Sampling for Information Extraction with a Committee of Classifiers

Evaluating Machine Learning for Information Extraction, Track 2

Ben Hachey, Markus Becker, Claire Grover & Ewan Klein University of Edinburgh

Overview

Introduction

Approach & Results

- Discussion
 - Alternative Selection Metrics
 - Costing Active Learning
 - Error Analysis
- Conclusions

Approaches to Active Learning

• Uncertainty Sampling (Cohn et al., 1995)

Usefulness \approx uncertainty of single learner

- Confidence: Label examples for which classifier is the least confident
- Entropy: Label examples for which output distribution from classifier has highest entropy
- Query by Committee (Seung et al., 1992)

 $\textbf{Usefulness} \approx \textbf{disagreement of committee of learners}$

- Vote entropy: disagreement between winners
- KL-divergence: distance between class output distributions
- F-score: distance between tag structures

Committee

- Creating a Committee
 - Bagging or randomly perturbing event counts, random feature subspaces (Abe and Mamitsuka, 1998; Argamon-Engelson and Dagan, 1999; Chawla 2005)
 - Automatic, but not ensured diversity...
 - Hand-crafted feature split (Osborne & Baldridge, 2004)
 - Can ensure diversity
 - Can ensure some level of independence
- We use a hand crafted feature split with a maximum entropy Markov model classifier (Klein et al., 2003; Finkel et al., 2005)

Feature Split

Feature Set 1		Feature Set 2	
Word Features	W_{i}, W_{i-l}, W_{i+l}	TnT POS tags	$POS_{i}, POS_{i-1}, POS_{i+1}$
	Disjunction of 5 prev words	Prev NE	$NE_{i-l}, NE_{i-2} + NE_{i-l}$
	Disjunction of 5 next words	Prev NE + POS	$NE_{i-1} + POS_{i-1} + POS_i$
Word Shape	$shape_{i}$, $shape_{i-1}$, $shape_{i+1}$		$NE_{i-2} + NE_{i-1} + POS_{i-2} + POS_{i-1} + POS_i$
	$shape_i + shape_{i+1}$	Occurrence Patterns	Capture multiple references to NEs
	$shape_i + shape_{i-1} + shape_{i+1}$		
Prev NE	$NE_{i-l}, NE_{i-2} + NE_{i-l}$]	
	$NE_{i-3} + NE_{i-2} + NE_{i-1}$		
Prev NE + Word	$NE_{i-1} + w_i$		
Prev NE + shape	$NE_{i-1} + shape_i$		
	$NE_{i-1} + shape_{i+1}$		
	$NE_{i-1} + shape_{i-1} + shape_i$		
	$NE_{i-2} + NE_{i-1} + shape_{i-2} + shape_{i-1} + $		
	shape _i		
Position	Document Position	J	
		-	
Words, Woi	rd shapes.	Parts-of-spe	eech. Occurrence

Words, Word shapes,	Parts-of-speech, Occurrence
Document position	patterns of proper nouns

KL-divergence (McCallum & Nigam, 1998)

• Quantifies degree of disagreement between distributions:

 $D(p \parallel q) = \sum_{x \in Y} p(x) \log \frac{p(x)}{q(x)}$

- Document-level
 - Average

Evaluation Results

13/04/2005

Selective Sampling for IE with a Committee of Classifiers

Discussion

- Best average improvement over baseline learning curve:
 - 1.3 points f-score
- Average % improvement:
 2.1% f-score
- Absolute scores middle of the pack

Overview

- Introduction
 - Approach & Results
- Discussion
 - Alternative Selection Metrics
 - Costing Active Learning
 - Error Analysis
- Conclusions

Other Selection Metrics

- KL-max
 - Maximum per-token KL-divergence
- F-complement
 - (Ngai & Yarowsky, 2000)

B

- Structural comparison between analyses
- Pairwise f-score between phrase assignments:

$$f_{comp} = 1 - F(A_1(s), A_2(s))$$

A

С

Related Work: BioNER

- NER-annotated sub-set of GENIA corpus (Kim et al., 2003)
 - Bio-medical abstracts
 - 5 entities:

DNA, RNA, cell line, cell type, protein

- Used 12,500 sentences for simulated AL experiments
 - Seed: 500
 - Pool: 10,000
 - Test: 2,000

Costing Active Learning

- Want to compare reduction in cost (annotator effort & pay)
- Plot results with several different cost metrics
 - # Sentence, # Tokens, # Entities

Simulation Results: Sentences

Simulation Results: Tokens

Number of Tokens in the Training Data

Simulation Results: Entities

Costing AL Revisited (BioNLP data)

Metric	Tokens	Entities	Ent/Tok
Random	26.7 (0.8)	2.8 (0.1)	10.5 %
F-comp	25.8 (2.4)	2.2 (0.7)	8.5 %
MaxKL	30.9 (1.5)	3.3 (0.2)	10.7 %
AveKL	27.1 (1.8)	3.3 (0.2)	12.2 %

• Averaged KL does not have a significant effect on sentence length

 \rightarrow *Expect shorter per sent annotation times.*

• Relatively high concentration of entities

 \rightarrow *Expect more positive examples for learning.*

Document Cost Metric (Dev)

13/04/2005

Selective Sampling for IE with a Committee of Classifiers

Token Cost Metric (Dev)

13/04/2005

Discussion

- Difficult to do comparison between metrics
 - Document unit cost not necessarily realistic estimate real cost
- Suggestion for future evaluation:
 - Use corpus with measure of annotation cost at some level (document, sentence, token)

Longest Document Baseline

Confusion Matrix

- Token-level
- B-, I- removed
- Random Baseline
 - Trained on 320 documents
- Selective Sampling
 - Trained on 280+40 documents

random	0	wshm	wsnm	cfnm	wsac	wslo	cfac	wsdt	wssdt	wsndt	wscdt	cfhm
0	94.82	0.37	0.14	0.07	0.04	0.04	0.05	0.04	0.02	0.01	0.01	0.03
wshm	0.35	0.86	0	0	0	0	0	0	0	0	0	0.14
wsnm	0.34	0	0.64	0	0	0	0	0	0	0	0	0
cfnm	0.09	0	0.01	0.2	0	0	0	0	0	0	0	0
wsac	0.1	0	0	0	0.19	0	0.04	0	0	0	0	0
wslo	0.16	0	0	0	0	0.19	0	0	0	0	0	0
cfac	0.05	0	0	0	0.03	0	0.15	0	0	0	0	0
wsdt	0.07	0	0	0	0	0	0	0.13	0	0	0	0
wssdt	0.03	0	0	0	0	0	0	0	0.1	0	0	0
sndt	0.01	0	0	0	0	0	0	0	0.01	0.07	0	0
wscdt	0.01	0	0	0	0	0	0	0	0	0	0.06	0
cfhm	0.09	0.16	0	0	0	0	0	0	0	0	0	0.09
1.4				-			2					~
selective	0	wshm	wsnm	cfnm	wsac	wslo	cfac	wsdt	wssdt	wsndt	wscdt	cfhm
0	94.88	0.34	0.11	0.06	0.04	0.05	0.05	0.03	0.02	0	0.01	0.03
wshm	0.33	0.9	0	0	0	0	0	0	0	0	0	0.11
wsnm	0.34	0	0.64	0	0	0	0	0	0	0	0	0
cfnm	0.08	0	0.01	0.21	0	0	0	0	0	0	0	0
wsac	0.08	0	0	0	0.22	0	0.03	0	0	0	0	0
wslo	0.15	0	0	0	0	0.2	0	0	0	0	0	0
cfac	0.06	0	0	0	0.03	0	0.13	0	0	0	0	0
wsdt	0.07	0	0	0	0	0	0	0.13	0	0	0	0
wssdt	0.03	0	0	0	0	0	0	0	0.1	0	0	0
wsndt	0.01	0	0	0	0	0	0	0	0.01	0.07	0	0
wscdt	0.01	0	0	0	0	0	0	0	0	0.01	0.06	0
cfhm	0.09	0.18	0	0	0	0	0	0	0	0	0	0.07

random	0	wshm	wsnm	cfnm	wsac	wslo	cfac	wsdt	wssdt	wsndt	wscdt	cfhm
0	94.82	0.37	0.14	0.07	0.04	0.04	0.05	0.04	0.02	0.01	0.01	0.03
wshm	0.35	0.86	0	0	0	0	0	0	0	0	0	0.14
wsnm	0.34	0	0.64	0	0	0	0	0	0	0	0	0
cfnm	0.09	0	0.01	0.2	0	0	0	0	0	0	0	0
wsac	0.1	0	0	0	0.19	0	0.04	0	0	0	0	0
wslo	0.16	0	0	0	0	0.19	0	0	0	0	0	0
cfac	0.05	0	0	0	0.03	0	0.15	0	0	0	0	0
wsdt	0.07	0	0	0	0	0	0	0.13	0	0	0	0
wssdt	0.03	0	0	0	0	0	0	0	0.1	0	0	0
sndt	0.01	0	0	0	0	0	0	0	0.01	0.07	0	0
wscdt	0.01	0	0	0	0	0	0	0	0	0	0.06	0
cfhm	0.09	0.16	0	0	0	0	0	0	0	0	0	0.09
.												~
selective	0	wshm	wsnm	cfnm	wsac	wslo	ctac	wsdt	wssdt	wsndt	wscdt	cfhm
0	94.88	0.34	0.11	0.06	0.04	0.05	0.05	0.03	0.02	0	0.01	0.03
wshm	0.33	0.9	0	0	0	0	0	0	0	0	0	0.11
wsnm	0.34	0	0.64	0	0	0	0	0	0	0	0	0
cfnm	0.08	0	0.01	0.21	0	0	0	0	0	0	0	0
wsac	0.08	0	0	0	0.22	0	0.03	0	0	0	0	0
wslo	0.15	0	0	0	0	0.2	0	0	0	0	0	0
cfac	0.06	0	0	0	0.03	0	0.13	0	0	0	0	0
wsdt	0.07	0	0	0	0	0	0	0.13	0	0	0	0
wssdt	0.03	0	0	0	0	0	0	0	0.1	0	0	0
wsndt	0.01	0	0	0	0	0	0	0	0.01	0.07	0	0
wscdt	0.01	0	0	0	0	0	0	0	0	0.01	0.06	0
cfhm	0.09	0.18	0	0	0	0	0	0	0	0	0	0.07

random	0	wshm	wsnm	cfnm	wsac	wslo	cfac	wsdt	wssdt	wsndt	wscdt	cfhm
0	94.82	0.37	0.14	0.07	0.04	0.04	0.05	0.04	0.02	0.01	0.01	0.03
wshm	0.35	0.86	0	0	0	0	0	0	0	0	0	0.14
wsnm	0.34	0	0.64	0	0	0	0	0	0	0	0	0
cfnm	0.09	0	0.01	0.2	0	0	0	0	0	0	0	0
wsac	0.1	0	0	0	0.19	0	0.04	0	0	0	0	0
wslo	0.16	0	0	0	0	0.19	0	0	0	0	0	0
cfac	0.05	0	0	0	0.03	0	0.15	0	0	0	0	0
wsdt	0.07	0	0	0	0	0	0	0.13	0	0	0	0
wssdt	0.03	0	0	0	0	0	0	0	0.1	0	0	0
sndt	0.01	0	0	0	0	0	0	0	0.01	0.07	0	0
wscdt	0.01	0	0	0	0	0	0	0	0	0	0.06	0
cfhm	0.09	0.16	0	0	0	0	0	0	0	0	0	0.09
selective	0	wshm	wsnm	cfnm	wsac	wslo	cfac	wsdt	wssdt	wsndt	wscdt	cfhm
0	94.88	0.34	0.11	0.06	0.04	0.05	0.05	0.03	0.02	0	0.01	0.03
wshm	0.33	0.9	0	0	0	0	0	0	0	0	0	0.11
wsnm	0.34	0	0.64	0	0	0	0	0	0	0	0	0
cfnm	0.08	0	0.01	0.21	0	0	0	0	0	0	0	0
wsac	0.08	0	0	0	0.22	0	0.03	0	0	0	0	0
wslo	0.15	0	0	0	0	0.2	0	0	0	0	0	0
cfac	0.06	0	0	0	0.03	0	0.13	0	0	0	0	0
wsdt	0.07	0	0	0	0	0	0	0.13	0	0	0	0
wssdt	0.03	0	0	0	0	0	0	0	0.1	0	0	0
wsndt	0.01	0	0	0	0	0	0	0	0.01	0.07	0	0
wscdt	0.01	0	0	0	0	0	0	0	0	0.01	0.06	0
cfhm	0.09	0.18	0	0	0	0	0	0	0	0	0	0.07

Overview

- Introduction
 - Approach & Results
- Discussion
 - Alternative Selection Metrics
 - Costing Active Learning
 - Error Analysis
- Conclusions

Conclusions

AL for IE with a Committee of Classifiers:

- Approach using KL-divergence to measure disagreement amongst MEMM classifiers
 - Classification framework: simplification of IE task
- Ave. Improvement: 1.3 absolute, 2.1 % f-score

Suggestions:

- Interaction between AL methods and text-based cost estimates
 - Comparison of methods will benefit from real cost information...
- Full simulation?

Thank you

The SEER/EASIE Project Team

Edinburgh:

Stanford:

Bea Alex, Markus Becker, Shipra Dingare, Rachel Dowsett, Claire Grover, Ben Hachey, Olivia Johnson, Ewan Klein, Yuval Krymolowski, Jochen Leidner, Bob Mann, Malvina Nissim, Bonnie Webber

Chris Cox, Jenny Finkel, Chris Manning, Huy Nguyen, Jamie Nicolson

More Results

Evaluation Results: Tokens

Evaluation Results: Entities

Entity Cost Metric (Dev)

13/04/2005

Selective Sampling for IE with a Committee of Classifiers

More Analysis

13/04/2005

Boundaries: Acc+class/Acc-class

Round	Random	Selective
1	0.974/0.970	0.975/0.970
4	0.977/0.971	0.977/0.972
8	0.978/0.973	0.979/0.975

Boundaries: Full/Left/Right F-score

Round	Random	Selective	Δ
1	0.564/0.593/0.588	0.568/0.594/0.593	0.004/0.001/0.018
4	0.623/0.648/0.647	0.619/0.643/0.643	004/005/004
8	0.648/0.669/0.676	0.663/0.684/0.690	0.015/0.015/0.013