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Overview

Named Entity recognition involves identifying expressions which refer to (for example) people,
organisations, locations, or artefacts in texts. This paper reports on the development of a
Named Entity recognition system developed fully within the XML paradigm.

In section 1 we describe the nature of the Named Entity recognition task and the complexities
involved. The system we developed was entered as part of a DARPA-sponsored competition,
and we will briefly describe the nature of that competition.

We then give an overview of the design philosophy behind our Named Entity recognition
system and describe the various XML tools that were used both in the development of the
system and that make up the runtime system (section 2), and give a detailed description of
how these tools were used to recognise temporal and numerical expressions (section 3) and
names of people, organisations and locations (section 4). We conclude with a description of the
results we achieved in the competition, and how these compare to other systems (section 5),
and give details on the availability of the system (section 6).

1 Named Entity recognition

1.1 Named Entities

Named Entity recognition involves processing a text and identifying certain occurences of
words or expressions as belonging to particular categories of Named Entities (NE). When this
is done within the XML paradigm, the result is annotated text where each NE is annotated
with information about the type of NE the system found.

Consider the following sentence:

*Now at Harlequin Ltd. (Edinburgh office)



On Jan 13th, John Briggs Jnr contacted Wonderful Stockbrokers Inc in
New York and instructed them to sell all his shares in Acme.

A Named Entity recognition system might annotate this sentence as follows:

On <NE TYPE="DATE">Jan 13th</NE>, <NE TYPE="PERSON">John Briggs Jnr</NE>
contacted <NE TYPE="COMPANY">Wonderful Stockbrokers Inc</NE> in

<NE TYPE="PLACE">New York</NE> and instructed them to sell all his shares in
<NE TYPE="COMPANY">Acme</NE>.

What counts as a Named Entity depends on the application that makes use of the annotations.
One such application is document retrieval or automated document forwarding: documents
annoted with NE information can be searched or forwarded more accurately than raw text.
For example, NE annotation allows you to search for all texts that mention the company
Philip Morris, ignoring documents about an unrelated person called Philip Morris. Or you
can have all documents forwarded to you about a person called Gates, without receiving
documents about things called gates. In a document collection annotated with Named Entity
information you can easily find documents about the space shuttle Columbia without getting
documents about Columbia D.C. Or you can retrieve all documents that talk about Hope (in
Alabama), without also getting documents about people called Hope or about expectations
and desires.

Another use of Named Entity recognition is in the construction of back-of-the-book indexes
(e.g. an index for an encyclopaedia). In such an index you probably want to distinguish
discussions of Alfred Nobel from mentions of people who won the Nobel prize, rather than
just giving page numbers for every single occurence of “Nobel”. This can be done if the NE
recognition system has annotated mentions of Nobel as a person differently from mentions
of Nobel as an artefact. Similarly, such an index will probably want to distinguish between
Alzheimer the disease and Alzheimer the doctor, or between Java the programming language
and Java the country.

Current work on metadata standardization (XML-Data, RDF) is concerned with the devel-
opment of a syntax for annotating this kind of information. The system described here is
intended to provide such annotation automatically.

1.2 Named Entities in the LTG system

We recently designed and built a Named Entity recognition system and entered the system
in the Message Understanding Competition MUC. This is a competition on information ex-
traction from text, sponsored by the U.S. Defense Advanced Research Projects Agency [8].
The Named Entities our system recognises and the type of annotation it uses for the markup
are therefore the ones stipulated by the MUC competition rules. Here are some examples;

Temporal expressions. For the competition, absolute and relative temporal expressions
needed to be marked up as <TIMEX> entities of type DATE or TIME. For example:

<TIMEX TYPE="DATE">all of 1987</TIMEX>
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<TIMEX TYPE="DATE">from 1990 through 1992</TIMEX>
<TIMEX TYPE="DATE">first-half</TIMEX> profit
the <TIMEX TYPE="DATE">1986-87 academic year</TIMEX>
<TIMEX TYPE="TIME">8:24 a.m. Chicago time</TIMEX>
<TIMEX TYPE="TIME">early Friday evening</TIMEX>
<TIMEX TYPE="TIME">9 p.m.</TIMEX><TIMEX TYPE="DATE">Monday</TIMEX>
the <TIMEX TYPE="TIME">morning after the
<TIMEX TYPE="DATE">July 17</TIMEX> disaster</TIMEX>
on <TIMEX TYPE="DATE">All Saints’ Day</TIMEX>

Mentions of currencies and percentages. Numeric expressions, monetary expressions and
percentages, whether in numeric or alphabetic form, had to be marked up as <NUMEX>
entities of type MONEY or of type PERCENT. For example:

<NUMEX TYPE="MONEY">175 to 180 million Canadian dollars</NUMEX>
<NUMEX TYPE="MONEY">10- and 20-dollar</NUMEX>bills

<NUMEX TYPE="MONEY">several million New Pesos</NUMEX>

the equivalent of less than <NUMEX TYPE="MONEY">a U.S. penny</NUMEX>
more than<NUMEX TYPE="PERCENT">95%</NUMEX>

Names of organisations, persons and locations. These are marked up as <ENAMEX> en-
tities of type ORGANIZATION, PERSON or LOCATION. For example:

in <ENAMEX TYPE="LOCATION">North and South America</ENAMEX>
<ENAMEX TYPE="LOCATION">U.S.</ENAMEX> exporters
the <ENAMEX TYPE="ORGANIZATION">U.S. Fish and Wildlife Service</ENAMEX>
some <ENAMEX TYPE="ORGANIZATION">Treasury</ENAMEX> bonds and securities
the <ENAMEX TYPE="PERSON">Clinton</ENAMEX> government
<ENAMEX TYPE="ORGANISATION">Microsoft</ENAMEX> chairman

<ENAMEX TYPE="PERSON">Bill Gates</ENAMEX> said yesterday...

Also, nicknames of organisations (e.g. “Big Blue”), locations (e.g. “the Big Apple”) and
people (e.g. “Mr. Fix-It") needed to be marked up as ENAMEX entities of the appropriate

type.

1.3 The complexity of Named Entity recognition

Named Entity recognition is a difficult task for a number of reasons. First, the definition of
what is and is not a Named Entity can be very complex. For example, according to the MUC
competition rules, the following should not be marked up:

Artefacts. Artefacts like “the space shuttle Columbia” don’t get marked up. The “Wall
Street Journal” and “MTYV” are organisations, and should be marked up as such. But
when someone is reading the Wall Street Journal or watching MTV, they are artefacts,
and should not be marked up. “Boeing” is an organisation, whose stocks may rise when
Acme Corp orders another “Boeing”. That second occurence of “Boeing” is an artefact
and should not be marked up; but the first occurence of “Boeing” is an organisation
and should be marked up.
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Things named after people. “Nobel” and “Alzheimer” are names of people, and occurences
of their names should be tagged as such. But in “Nobel Prize” or “Alzheimer’s” their
names should not be tagged.

Numbers which are not currencies or percentages. For example, one should not add
markup to expressions like “unchanged at 95.05”, “went up 12 points” or “1.5 times”.

These rules may look ad hoc, but that is an accurate reflection of the nature of the Named
Entity recognition task: what is and is not a Named Entity depends on the application
that will make use of the Named Entities. The application may require you to distinguish
Alfred Nobel from the Nobel prize, but need not. Also, in the system we developed we
don’t distinguish different types of artefacts—we only distinguish artefacts from organisations,
people and locations, and leave the artefactual use of words like Boeing (the aircraft), Nobel
(the prize) or Columbia (the space shuttle) unmarked. But one can easily imagine applications
where transport vehicles (like a Boeing or a space shuttle) need to be marked separately from
all other artefacts.

A second difficulty is that it is important to tag exactly the right words. The entire string
“Arthur Andersen Consulting” should be marked as an ORGANIZATION; one should not mark
the substring “Arthur Andersen” as a PERSON. In “Canada’s Parliament”, “Canada” (without
the ’s) should be marked up as LOCATION; “Parliament” should be marked up as ORGANIZATION.
Again, this may appear ad hoc and the definition of how much should be marked up will be
defined by the application. But for any application, consistency of NE markup, however ad
hoc it may seem, is crucial.

The third and biggest problem is that Named Entities are expressed with words which can
refer to many other things. One might think that Named Entity recognition could be done
by using lists of (e.g.) names of people, places and organisations, but that is not the case. To
begin with, the lists would be huge: it is estimated that there are 1.5 million unique surnames
just in the U.S. [11]. It is not feasible to list all possible surnames in the world in a Named
Entity recognition system.

There is a similar problem with company names. A list of all current companies worldwide
would be huge, if at all available, and would be out of date tomorrow since new companies
are formed all the time. In addition, company names can occur in variations: a list of
company names might contain “The Royal Bank of Scotland plc”, but that company might
also be referred to as “The Royal Bank of Scotland”, “The Royal” or “The Royal plc”. These
variations would all have to be listed as well.

But even if it was possible to list all possible organisations and locations and people, there
would still be the problem of overlaps between the list. Names such as Emerson or Washington
could be names of people as well as places; Philip Morris could be a person or an organisation.
In addition, such lists would also contain words like “Hope” (a location) and “Thinking
Machines” (a company), whereas these words could also occur in contexts where they don’t
refer to named entities. One could add some intelligence to the system and only tag these
words when they have a capital letter. But that would still lead to erroneous markup when
“Hope” occurs at the start of a sentence, or when “Thinking Machines” occurs in an all-
capitalised headline. *
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Identifying temporal expressions seems easier—after all, there are only 12 months, and we
can list these and reliably identify them. But a system that does this might get confused
when it finds a mention of “the Chinese-built Long March rocket” or a reference to someone
called “April May”, expressions which obviously should not be marked up as dates.

1.4 The MUC Competition

The MUC competition for which we built our system took place in March 1998. Prior to the
competition, participants received a detailed coding manual which specified what should and
should not be marked up, and how the markup should proceed. They also received a few
hundred articles from the New York Times Service, marked up by the organisers according
to the rules of the coding manual.

For the competition itself, participants received 100 articles. They then had 5 days to perform
the chosen information extraction tasks (in our case: Named Entity recognition) without
human intervention, and markup the text with the Named Entities found. The resulting
marked up file then had to be returned to the organisers for scoring.

Scoring of the results is done automatically by the organisers. The scoring software compares
a participant’s answer file against a carefully prepared key file; the key file is considered to be
the “correctly” annotated file. Amongst many other things, the scoring software calculates a
system’s recall and precision scores:

Recall: Number of correct tags in the answer file over total number of tags in the key file.

Precision: Number of correct tags in the answer file over total number of tags in the answer

file.

Recall and precision are generally accepted ways of measuring system performance in this
field. For example, suppose you have a text which is 1000 words long, and 20 of these words
express a location. Now imagine a dumb system which assigns the LOCATION tag to every
single word in the text. This system will have tagged correctly all 20 locations, since it tagged
everything as LOCATION; its recall score is 20/20, or 100%. But of the 1000 LOCATION tags it
assigned, only those 20 were correct; its precision is therefore only 20/1000, or 2%.

Here is an invented example of the kind of text the participants in the MUC competition had
to process. The reason for inventing an example is that it allows us to demonstrate a wider
range of phenomena in a more compact way:

<DOC>

<PREAMBLE>

GENERAL TRENDS ANALYST PREDICTS LITTLE SPRING EXPLOSION

By Liza McDonald

</PREAMBLE>

<TEXT>

<P>Flavel Donne Jr, an analyst with General Trends Inc, announced 2 days ago that
Little Spring would come to a loud end on May 29, 1999. General Trends, which is
based in Little Spring, has been producing predictions like this since early 1963.</P>
<P>Donne is C.E.0. of General Trends and also of Adam Kluver Ltd. But John May, 29,
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spokesman for Adam Kluver, said yesterday they distanced themselves from Donne’s
prediction. He added that their stock had gone down 12} since May and is now valued
at 130 million Canadian dollars. Flavel Donne was 42 last Thursday.</P>
</TEXT></D0OC>

The example was constructed to illustrate a wide range of phenomena:

e Company names are fictitious, and not part of any lists of existing company names.

e Company names are multi-word expressions, which contain common words (general,
trends) or which look like person names (Adam Kluver).

e Company names are sometimes referred to only in part: “Adam Kluver Inc.” is also
referred to as Adam Kluver, which could be mistaken for a person; “General Trends Ltd”
is also referred to as “General Trends”, which—especially in the capitalized headline—
could be mistaken as a common noun phrase (an analyst of general trends).

e Person names have unusual christian names (Flavel, which we invented and is unlikely
to be in any list of Christian names) or possibly confusing surnames (May, which could
be mistaken for a temporal expression).

e There are multi-word person names (“Flavel Donne Jr”), but the same person is also
referred to as just “Donne”.

e The text contains dates, percentages and monetary values, which should be tagged. It
also contains other numbers, which should not be tagged: in “Donne is 42”, the number
should not be tagged; in “2 days ago”, the “2” should not be tagged, but the whole
expression should be tagged as a temporal expression.

e In one instance, “May” followed by a number indicates a date, in another it indicates
the name of a person followed by an age. This should result in different markup.

Our MUC system produces the following output:

<DOC>

<PREAMBLE>

<ENAMEX TYPE=’0RGANIZATION’>GENERAL TRENDS</ENAMEX> ANALYST PREDICTS
<ENAMEX TYPE=’LOCATION’>LITTLE SPRING</ENAMEX> EXPLOSION

By <ENAMEX TYPE=’PERSON’>Liza McDonald</ENAMEX>

</PREAMBLE>

<TEXT>

<P>

<ENAMEX TYPE=’PERSON’>Flavel Donne Jr</ENAMEX>, an analyst with

<ENAMEX TYPE=’ORGANIZATION’> General Trends Inc</ENAMEX>, announced
<TIMEX TYPE=’DATE’>2 days ago</TIMEX> that

<ENAMEX TYPE=’LOCATION’>Little Spring</ENAMEX> would come to a loud end
on <TIMEX TYPE=’DATE’>May 29, 1999</TIMEX>.

<ENAMEX TYPE=’0QRGANIZATION’>General Trends</ENAMEX>, which is based in
<ENAMEX TYPE=’LOCATION’>Little Spring</ENAMEX>, has been producing predictions like
this since <TIMEX TYPE=’DATE’>early 1963</TIMEX>.

<P>
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<ENAMEX TYPE=’PERSON’>Donne</ENAMEX> is C.E.0. of <ENAMEX TYPE=’0RGANIZATION’>General
Trends</ENAMEX> and also of <ENAMEX TYPE=’0RGANIZATION’>Adam Kluver Ltd.</ENAMEX>

But <ENAMEX TYPE=’PERSON’>John May</ENAMEX>, 29, spokesman for

<ENAMEX TYPE=’0RGANIZATION’>Adam Kluver</ENAMEX>, said

<TIMEX TYPE=’DATE’>yesterday</TIMEX> they distanced themselves from

<ENAMEX TYPE=’PERSON’>Donne</ENAMEX>’s prediction. He added that their stock had

gone down <NUMEX TYPE=’PERCENT’>12%</NUMEX> since <TIMEX TYPE=’DATE’>May</TIMEX>

and is now valued at <NUMEX TYPE=’MONEY’>130 million Canadian dollars</NUMEX>.
<ENAMEX TYPE=’PERSON’>Flavel Donne</ENAMEX> was 42 <TIMEX TYPE=’DATE’>last Thursday</TIMEX>.
</TEXT>

</D0OC>

2 LTG text handling tools

2.1 SGML awareness

At the Language Technology Group we have developed a suite of reusable text processing
tools. These are modular tools with stream input/output; each tool does a very specific job,
but can be combined with other tools in a pipeline. Different combinations of the same tools
can thus be used in a pipeline for completing different text processing tasks.

Our architecture imposes an additional constraint on the input/output streams: they should
have a common syntactic format. For this common format we use eXtensible Markup Lan-
guage (XML).

A tool in our architecture is thus a piece of software which uses an API for all its access to
XML data and performs a particular task: exploiting markup which has previously been added
by other tools, removing markup, or adding new markup to the stream(s) with or without
removing the previously added markup. This approach allows us to remain entirely within
the XML paradigm during text processing. At the same time, we can be very general in the
design of our tools, each of which can be used for many different purposes. Furthermore,
because we can pipe data through processes, the UNIX operating system itself provides the
natural “glue” for integrating data-level applications.

The XML-handling API in our workbench are our LT NSL and LT XML libraries ([12], [13]).
They allow a tool to read, change or add attribute values and character data to XML elements
and to address a particular element in an XML stream using a query language called ltquery.

ltquery offers a way of specifying particular nodes in the XML document structure. For exam-
ple, the newspaper articles we were dealing with in the MUC competition can be represented
as the SGML tree illustrated in Figure 1.

Queries in ltquery are coded as strings which give a (partial) description of a path from the
root of the XML document (the top-level element) to the desired XML element(s). For example,
the query

.%/TEXT/.*/S[STATUS="PARSED"]

refers to any <S> element whose attribute STATUS has the value PARSED and which occurs at
any level of nesting inside a <TEXT> element which, in turn, can occur anywhere inside the
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DOC

DOCID STORYID SLUG NWORDS DATE PREAMBLE TEXT TRAILER

Figure 1: Partial SGML tree for a MUC Newspaper article

document’s top-level element. It does not apply, e.g., to <S> elements inside the documents
<PREAMBLE>.

The example shows that an ltquery query is a sequence of terms, separated by slashes. Each
term in the query describes either an XML element or a nested sequence of XML elements.
Element names can be followed by a list of attribute specifications in square brackets. An
item that ends in a * matches a nested sequence of zero or more XML elements, each of which
match the item without the *. For example, P* will match a <P> element, arbitrarily deeply
nested inside other <P> elements. A full stop will match any XML element name; thus, a
simple way of finding a <P> element anywhere inside a document is to use the query .*/P.

A condition with an index n matches only the nth sub-element of the enclosing element.
Index counting starts from 0. Thus, DOC/TEXT/P[0] will give all first paragraphs under
<TEXT> elements which are under <DOC>.

The simplest way of configuring our XML tools is to specify in a query where the tool should
apply its processing. Using the syntax of ltquery we can directly specify which parts of the
stream we want to process and which parts we want to skip. This also allows us to provide a
tool with processing resources (e.g. grammars) specifically tailored to those document parts
the tool is attending to. For example, we have a tool called fsgmatch which can be used to
identify certain SGML elements in the input text and wrap them into larger SGML elements,
according to rules specified in resource grammars. It can be called with different resource
grammars for different document parts. Here is an example pipeline using fsgmatch:

>> cat text | fsgmatch -q ".*/DATE|NWORDS" date.gr
| fsgmatch -q ".*/PREAMBLE" preamb.gr
| fsgmatch -q ".*/TEXT/P[0]" first.gr

In this pipeline, fsgmatch takes the input text, and processes the data that has been marked
up as <DATE> or <NWORDS> using a resource grammar called date.gr; then it processes the
data in <PREAMBLE> using the resource grammar preamb.gr; and then it processes the first
paragraph in the <TEXT> section using the grammar first.gr.

This technique allows one to tailor resource grammars very precisely to particular parts of the
text. For example, the reason for applying first.gr to the first paragraph of a newspaper
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article is that that paragraph often contains unusual information which occurs nowhere else
in the article in that form. Here is the start of a typical article:

CAPE CANAVERAL, Fla. &MD; Working in chilly temperatures Wednesday...

In our analysis of the MUC newspaper articles, we noticed that if an article starts with capi-
talized words followed by &MD; the capitalized words indicate a location. It is easy to capture
this in a grammar. But the phenomenon only occurs in text initial <P> elements. And it is
very efficient to be able to tell fsgmatch only to apply that specialised grammar to the first
<P> element of any text it is processing.

We have developed a range of SGML and XML-aware processing tools. Some of them are low-
level tools, such as sgdelmarkup which strips unwanted markup from a document, or sgsed
and sgtr, which are SGML-aware versions of the UNIX tools sed and tr; some are higher-level
tools, such as the SGML transducer fsgmatch mentioned above. Combinations of these tools
provide us with the means to explore large text collections and to do fast prototyping of text
processing applications. We have used these tools in the development of systems for many
different applications, such as statistical text categorization [2], information extraction in a
medical domain [3], collocation extraction for lexicography [1], etc. A detailed description of
the tools, their interactions and applications can be found in [4] and [10]; information can also
be found at our website, http://wuw.ltg.ed.ac.uk/software/. In the rest of this section,
we will concentrate on some of the higer-level SGML-aware tools used in the Named Entity
recognition system.

2.2 lttok

lttok is an SGML-aware tokeniser. Tokenisers take an input stream and divide it up into
words or tokens, according to some agreed definition of what a token is. This is not just a
matter of finding white spaces between characters. For example, one needs to decide whether
“I’ve” and “can’t” are one or two tokens. Also, for some applications one may want to treat
as one token multi-word expressions like “Tony Blair Jnr”, “President Bill Clinton”, “Mr de
Toqueville” or “January 17th, 1998”. And hyphenated words like “first-quarter-charge” can
be treated as a single token or three tokens, depending on the application.

The LTG tokeniser 1ttok works at the character level: it looks at the characters in the input
stream and, using finite-state machinery, bundles them into tokens according to rules specified
in its resource grammars. The input to 1ttok can be sGML-marked up text, and 1ttok can
be directed to only process parsed character data within certain SGML or XML elements.

Here is an example of the use of 1ttok:
cat text | 1lttok -q ".*/P|TITLE|PREAMBLE|TRAILER" -mark W -attr C standard.gr

1lttok tokenises the character data in all the <P> elements as well as in the TITLE, the
PREAMBLE and the TRAILER, using the rules in the resource grammar standard.gr. The
tokens it finds will be marked up using the SGML element <W>, and attribute information will
be added using the attribute name C. The resource file stipulates what the possible values are
for this attribute. Here is some example output from this pipeline:
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s <W C=’W’>Donne</W> <W C=’W’>is</W> <W C="W’>C.E.0.</W> <W C=’W’>0f</W> <W
C=’W’>General</W> <W C=’W’>Trends</W> <W C=’W’>and</W> <W C=’W’>also</W>
<W C=’W’>0f</W> <W C=’W’>Adam</W> <W C=’W’>Kluver</W> <W C=’W’>Ltd.</W> <W
C="W?>But</W> <W C=’W’>John</W> <W C=’W’>May</W><W C=’CM’>,</W> <W C=’CD’>29</W><W
C=’CM’>,</W> <W C=’W’>spokesman</W>...

<W C=’W’>is</W> <W C=’W’>now</W> <W C=’W’>valued</W> <W C=’W’>at</W> <W
C=’CD’>130</W> <W C=’W’>million</W> <W C=’W’>Canadian</W> <W C=’W’>dollars.</W>

Because of instructions in the resource file standard.gr, 1ttok also added the attribute C to
each <W> element, whose value is W in the case of a word, CM in the case of a comma, CD in
the case of a numeral, etc. This is information which other processing tools can make use of.

2.3 ltstop

As the above example shows, although the tokeniser adds annotation for commas, it does not
add annotation for full stops. The reason for this is that not every period is a full stop; some
are part of an abbreviation. Depending on the choice of resource file for 1ttok, a period will
either always be attached to the preceding word (as in the above example, where the full stop
stays with the sentence-final word “dollars” and with the abbreviation “C.E.0.”) or it will
always be split off.

This creates an ambiguity where a sentence-final period is also part of an abbreviation, as
in our example “...and also of General Trends Ltd. But...” For many reasons is it useful to
know where a sentence ends, and looking for a full stop followed by a space and a capital
letter is not always sufficient, as illustrated in “It is the B.B.C. Secretary-General who...”

To resolve this ambiguity we use a special program, 1tstop, which applies a maximum entropy
model pre-trained on a corpus [7]. The statistical model knows which features are relevant in
deciding whether a word is an abbreviation (e.g. usual length of abbreviations, capitalization,
preceding words, ...) or when a word is sentence-final, or both. It has acquired these features
automatically, on the basis of a corpus in which abbreviations and full-stops have been hand-
annotated.

In the above example, 1tstop will split the period from ordinary sentence-final words and
create an end-of-sentence token <W C=".">.</W>; or it will leave the period with the word if
it is an abbreviation; or, in the case of sentence-final abbreviations, it will leave the period
with the abbreviation and in addition create a virtual full stop <W C="."></W>

Like the other LTG tools 1tstop can be targeted at particular SGML elements. In our example,
we want to target it at <W> elements within <P> elements—the output of 1ttok. It can be
used with different maximum entropy models, trained on different types of corpora.

For our example, the full pipeline looks as follows:

cat text | 1lttok -q ".*/P|TITLE|PREAMBLE|TRAILER" -mark W -attr C standard.gr
| 1tstop -q ".*/P/W" fs_model.me > text.stop

This will generate the following output in text.stop:
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<W C=’W’>Donne</W> <W C=’W’>is</W> <W C=’W’>C.E.0.</W> <W C="W’>0f</W> <W
C="W’>General</W> <W C=’W’>Trends</W> <W C=’W’>and</W> <W C=’W’>also</W> <W
C="W?>0f</W> <W C=’W’>Adam</W> <W C=’W’>Kluver</W> <W C=’W’>Ltd.</W><W C=’.7></W>
<W C=’W’>But</W> <W C=’W’>John</W> ...

<KW C=’W’>is</W> <W C=’W’>now</W> <W C=’W’>valued</W> <W C=’W’>at</W> <W
C=’CD’>130</W> <W C=’W’>million</W> <W C=’W’>Canadian</W> <W C=’W’>dollars</W><W
C=2.7>.</W> ...
Note how ltstop left periods with abbreviations like “C.E.OQ.”, separated off the full stop
after “dollars”, and left the period with “Ltd.” but added a final stop to this sentence, making
explicit that the period after “Litd.” has two distinct functions.

2.4 ltpos

Another standard LTG tool we use in our MUC system is our part-of-speech tagger 1tpos [6].
Part-of-speech tagging (POS tagging) involves annotating words (as identified by the tokeniser)
with information as to whether they are a verb, a noun, etc. To do this, POS taggers look up
words in a lexicon which will tell them that, e.g., “left” is most likely to be a past tense verb
(as in “he left”) or an adjective (“my left foot”), but could also be a past participle (“they
have left”), a noun (“on the left”), or an adverb (“go left”). Taggers also have statistical
co-occurrence information, e.g. that an adjective is more likely to be followed by a noun than
by a verb.

Part-of-speech tagged text is useful input for a Named Entity recognition system. For ex-
ample, in “GIVE ME THE BILL”, “BILL” will be tagged as a noun; in “GIVE ME BILL”,
“BILL” will be tagged as a proper name. The theoretical difference between a noun and a
proper name is not important for present purposes, except that names of people tend to be
proper names rather than nouns. On the basis of this information, a Named Entity recogni-
tion system can decide that “BILL” in the first sentence is more unlikely to be a <PERSON>
than in the second sentence. This is obviously not sufficient to make a decision either way as
to what sort of named entity “BILL” is, but it provides some extra evidence which can be
used in combination with (for example) contextual clues.

Our part-of-speech tagger 1tpos is SGML-aware: it reads a stream of SGML elements specified
by the query and applies a statistical technique to assign the most likely POS tags. An
important feature of the tagger is an advanced module for handling words which are not
in the lexicon [5]. This proved to be crucial for name spotting: given that part-of-speech
information can be a great help in detecting names, the POS tagger needs to be able to
Postag unknown words—like the word “Donne” in “Donne is 42”.

ltpos also carries out a few other tasks which are useful for Named Entity recognition. For
capitalised words, 1tpos adds information as to whether the word exist in lowercase in the
lexicon (marked as L="1") or whether it exists in lowercase elsewhere in the same document
(marked as L="d"), or none of the above (marked as L="#"). This information is particularly
useful for multi-word Named Entities, which contain common words: suppose a text contains
the sentence “Suspended Ceiling Contractors Ltd denied the charge”. Since the sentence-
initial word has a capital letter, it could be an adjective modifying the company “Ceiling
Contractors Ltd”, or it could be part of the company name, “Suspended Ceiling Contractors
Ltd”. By marking early on that “suspended” also occurs in the lexicon in lowercase, the sys-
tem will later know to be cautious about how many words to include in the <ORGANIZATION>
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tag.
This is what the pipeline looks like:

cat text.tok | ltpos -q ".*/P|PREAMBLE|TRAILER|BC|TITLE"
-pos_attr C -lookup_attr L posgram > text.pos

The call to 1tpos specifies that the part of speech tags should be entered as values to the
attribute C; in other words, it changes the current W values of the C attribute to POS values.
POS values are reasonably mnemonic abbreviations, fairly standard in the computational
linguistics literature—such as JJ for adjective, CC for conjunction, NN for singular noun,
NNP for singular proper name, and DT for determiner. The pipeline gives the following
output:

<W L=’#’ C=’NNP’>Flavel</W> <W L=’#’ C=’NNP’>Donne</W> <W L=’#’ C=’NNP’>Jr</W><W
C=’,7>,</W> <W C=’DT’>an</W> <W C=’NN’>analyst</W> <W C=’IN’>with</W> ...

2.5 fsgmatch

The core tool in our MUC system is fsgmatch. fsgmatch is an SGML transducer. It takes
certain types of SGML elements and wraps them into larger SGML elements. In addition, it is
also possible to use fsgmatch for character-level tokenisation, but in this paper we will only
describe its functionality at the sGML level.

fsgmatch can be called with different resource grammars, e.g. one can develop a grammar
for recognising names of organisations or temporal expressions. Like the other LTG tools, it
is possible to use fsgmatch in a very targeted way, telling it only to process SGML elements
within certain other SGML elements, and to use a specific resource grammar for that purpose.

The combined functionality of 1ttok and fsgmatch gives system designers many degrees of
freedom. Suppose you want to map character strings like “25th” or “3rd” into SGML entities.
You can do this at the character level, using 1ttok, specifying that strings that match [0-91+[
-17((st) | (nd) | (xd) | (th)) should be wrapped into the SGML structure <W C="ORD">. Or
you can do it at the SGML level: if your tokeniser had marked up numbers like “25” as <W
C="CD"> then you can write a rule for fsgmatch saying that <W C="NUM"> followed by a <W>
element whose character data consist of th, nd, rd or st can be wrapped into an <W C="0RD">
element.

A transduction rule in fsgmatch can access and utilize any information stated in the element
attributes, check sub-elements of an element, do lexicon lookup for character data of an
element, etc. For instance, a transduction rule can say: “if there are one or more W elements
(i.e. words) with attribute C (i.e. part of speech tag) set to NNP (proper noun) followed by a
W element with character data “Ltd.”, then wrap this sequence into an ENAMEX element with
attribute TYPE set to ORGANIZATION.

Transduction rules can check left and right contexts, and they can access sub-elements of
complex elements; for example, a rule can check whether the last W element under an NG
element (i.e. the head noun of a noun group) is of a particular type, and then include the
whole noun group into a higher level construction. Element contents can be looked up in a
lexicon. The lexicon lookup supports multi-word entries and multiple rule matches are always
resolved to the longest one.
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An example of a small but useful thing we use fsgmatch for is to assign certain “semantic”
tags which are particularly useful for MUC processing. For example, words ending in -yst
and -ist (analyst, geologist) as well as words occurring in a special list of words (spokesman,
director) are recognised as professions and marked as such (S="PROF"). Adjectives ending in
-an or -ese whose root form occurs in a list of locations (American, Japanese) are marked as
locative adjectives (S="L0C_JJ").

To achieve this, it makes most sense to invoke fsgmatch immediately after 1tpos:

cat text.pos | fsgmatch -q ".*/P|PREAMBLE|TRAILER" sem.gr

<W L=’#’ C=’NNP’>Flavel</W> <W L=’T’ C=’NNP’>Donne</W> <W L=’#’
C=’NNP’>Jr</W></ENAMEX><W C=’,’>,</W> <W C=’DT’>an</W> <W S=’PROF’
C=’NN’>analyst</W> <W C=’IN’>with</W>

Because fsgmatch plays such a crucial role in our MUC system, we describe it and the rules
in the resource grammars in more detail in the following section.

3 TIMEX, NUMEX

Temporal and numerical expressions in English newspapers have a fairly structured appear-
ance which can be captured by means of grammar rules. We developed a grammar for the
temporal expressions we needed to capture. We also compiled lists of temporal entities, like
days of the week and names of months (including abbreviations), and holidays and festivals
(like “Hannukah” and “Hogmanay”). We also compiled a grammar of numerical expressions,
as well as a list of currencies. The SGML transducer fsgmatch uses these resources to wrap
the appropriate strings with timex and numex tags.

Figure 2 is an excerpt of the kind of resource file used by fsgmatch to identify certain timex
expressions in the texts.

One of the rules in Figure 2 is called day-name. Its type is DISJF, which means that, for
the rule to be successful, one of its subrules (day-name-full or day-name-abbrev) should
succeed.

The rule day-name-full checks whether the input matches CCAPWRD—it checks if the input is
an SGML entity labelled <W> (i.e. a word), whose PCDATA match the regular expression given
in the entity definition for CCAPWRD (i.e. whether it is a capitalized word). When it finds
a matching SGML item, it checks whether this word also occurs in the file TIM_lex—a file
containing many temporal expressions, such as Monday, January, Tue, and Hogmanay, with
tags indicating whether they are days of the week, holidays, etc. If the capitalized word is
found in that file, its tag is checked. If the tag is found to be DY the <W> element is wrapped
in a <TIMEX> element of type DATE.

It is worth pointing out that the resource files of which Figure 2 is a small excerpt are
themselves structured as XML documents. We firmly believe that a good strategy for building
text processing applications like the NE system is to build them using XML annotated stream
input/output, but it does not follow from this that all the resource files that are called in the
course of this process should also be in xML. However, because the production of the resource

Named Entity recognition in XML - 13- Mikheev et al



<?7XML version="1.0" 7>

<!DOCTYPE RULES SYSTEM "RuleSpec.dtd" [
<!ENTITY CAPWRD "wW/# " [A-Z] [A-z] *$" >
1>

<RULES name="date" apply="all" type=SGML>

<LEX type="PHRASE"
file_name="&NUMEX-DIR;/timex.lex"
alias="TIM_lex" ></LEX>

<!-- Monday Tuesday ... -—>
<RULE name="day-name-full" targ_sg=’TIMEX TYPE DATE’ >
<REL match="&CAPWRD;" >
<CONSTR check_in="TIM_lex" check_tags="DY *"></CONSTR>
</REL>
</RULE>

<!-- Mon. Mon Tues. Tues ... -->
<RULE name="day-name-abbrev" targ_sg=’TIMEX TYPE DATE’>
<REL match="&CAPWRD;" >
<CONSTR check_in="TIM_lex" check_tags="DYA x"></CONSTR>

</REL>
<REL match="W[C="."]" m_mod=QUEST></REL>
</RULE>
<!-- Monday Mon. Mon e

<RULE name="day-name" type=DISJF >
<REL type=REF match="day-name-full"></REL>
<REL type=REF match="day-name-abbrev"></REL>
</RULE>
</RULES>

Figure 2: Examples of SGML transduction rules for recognising certain temporal expressions

files was done by a number of different people, working within XML with commonly agreed
DTDs was found to be helpful.

The TIMEX and NUMEX components of our MUC system do not make use of part-of-speech
tagged information, and can be run before or after 1ttok and 1tstop.

4 ENAMEX

For recognising enamex elements, we similarly compiled grammars and collected resources,
such as names of locations and organisations, first names (for use in name recognition), etc.
But as demonstrated in section 1, a MUC system cannot rely too much on such lists, and
different strategies need to be used for high-precision enamex recognition. In fact, we have
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also run our NE system without any lexical resources and report on these experiments in [9].

The basic philosophy underlying our approach is as follows. When looking at a string of
words like “Adam Kluver” it is not possible to say whether this is the name of a person or an
organisation. However, somewhere in the text, there is likely to be some contextual material
which makes it clear which of those it is. Qur strategy is to only make a decision once we
have identified this bit of contextual information.

We further assume that, once we have identified contextual material which makes it clear that
“Adam Kluver” is (e.g.) the name of a company, then any other mention of “Adam Kluver”
in that document will be referring to that company. If the author at some point had wanted
to also refer to a person called “Adam Kluver”, s/he would have provided some extra context
to make this clear, and this context would have been picked up in the first step.

If no suitable context is found anywhere in the text to decide what sort of Named Entity
“Adam Kluver” is, the system can check other resources, e.g. a list of known company names.
But this method only applies after substantial context checking has been carried out.

In our MUC system, we implemented this approach as a combination of symbolic transduction
of SGML elements with probabilistic partial matching, in 5 stages:

1. sure-fire rules
2. partial match 1
3. relaxed rules
4. partial match 2

5. title assignment

We describe each in turn.

ENAMEX: 1. Sure-fire Rules

In the first step, our SGML transducer fsgmatch is used with sure-fire rules. These rules are
very context-oriented and they fire only when a possible candidate expression is surrounded
by a suggestive context. Sure-fire rules rely on known corporate designators (Ltd., Inc., etc.),
person titles (Mr., Dr., Sen.), and definite contexts such as those in Figure 3. The sure-fire
rules apply after POs tagging, so at this stage words like “analyst” have already been identified
as PROF (professions), and words like “brother” as REL (relatives).

An example of a transduction rule is presented in Figure 4.

At this stage our MUC system treats information from the lists as likely rather than definite
and always checks if the context is either suggestive or non-contradictive. For example, a
likely company name with a conjunction is left untagged at this stage if the company is
not listed in a list of known companies: in a sentence like “this was good news for China
International Trust and Investment Corp”, it is not clear whether the text deals with one or
two companies, and no markup is applied.
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Context Rule Assign | Example

Xxxx+ is? a? JJ* PROF PERS Yuri Gromov, a former director
Xxxx+ is? a%? JJ* REL PERS John White is beloved brother
Xxxx+ himself PERS | White himself

Xxxx+, DD+, PERS | White, 33,

shares in Xxxx+ ORG shares in Trinity Motors

PROF of/at/with Xxxx+ ORG director of Trinity Motors
in/at LOC LOC in Washington

Xxxx+ area LoC Beribidjan area

Figure 3: Examples of sure-fire transduction material for enamex. Xxxx+ is a sequence of
capitalized words; DD is a digit; PROF is a profession; REL is a relative; JJ* is a sequence
of zero or more adjectives; LOC is a known location.

Similarly, the system postpones the markup of unknown organizations whose name starts
with a sentence initial common word, as in “Suspended Ceiling Contractors Ltd denied the
charge”. Since the sentence-initial word has a capital letter, it could be an adjective modifying
the company “Ceiling Contractors Ltd”, or it could be part of the company name, “Suspended
Ceiling Contractors Ltd”.

Names of possible locations found in our gazetteer of place names are marked as LOCATION
only if they appear with a context that is suggestive of location. “Washington”, for example,
can just as easily be a surname or the name of an organization. Only in a suggestive context,
like “in the Washington area”, will it be marked up as location.

ENAMEX: 2. Partial Match 1

After the sure-fire symbolic transduction the system performs a probabilistic partial match
of the identified entities. This is implemented as an interaction between two tools. The
first tool collects all named entities already identified in the document. It then generates all
possible partial orders of the composing words preserving their order, and marks them if found
elsewhere in the text. In our example, “Adam Kluver Ltd” had already been recognised as
an organisation by the sure-fire rule. In this second step, any occurrences of “Adam Kluver”,
“Kluver Ltd”, “Adam Ltd” and “Adam Kluver” are also tagged as possible organizations.
This markup, however, is not definite since some of these words (such as “Adam”) could refer
to a different entity.

This annotated stream goes to a second tool, a pre-trained maximum entropy model. It takes
into account contextual information for named entities, such as their position in the sentence,
whether they exist in lowercase in general, whether they were used in lowercase elsewhere in
the same document, etc. These features are passed to the model as attributes of the partially
matched words. If the model provides a positive answer for a partial match, the match is
wrapped into a corresponding ENAMEX element.
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<RULE name="FirstNameDictExact" type=DISJ >
<REL match = "W/#7[A-Z] [a-z]+$" >
<LEXCHECK check_in= "NAMES_lex" check_tags="FN *" ></LEXCHECK>
</REL>
<REL match = "W/#~[A-Z] [a-z]+((slav) | (1do))$" >
</RULE>

<RULE name="John_Uuuu+_Xxxx_Jr?" type=SEQ targ=’ENAMEX TYPE=PERSON’ >

<REL match = "FirstNameDictExact" type="REF" ></REL>

<REL match = "W[C=NNP]" m_mod= STAR  ></REL>

<REL match = "W[C=NNP L!=d]" m_mod= PLUS  ></REL>

<REL match = *W/#""((Jr\.?) | (Sr\.?7))’ m_mod= QUEST ></REL>
</RULE>

Figure 4: Sample of a transduction rule. The rule John Uuuu+ Xxxx Jr? calls subrules in
sequence by referencing the rule FirstNameDictExact.

ENAMEX: 3. Rule Relaxation

Once this has been done, the system again applies the SGML transduction rules. But this time
the rules have much more relaxed contextual constraints and extensively use the information
from already existing markup and from the lexicon compiled during processing, e.g. containing
partial orders of already identified named entities.

At this stage the system will mark word sequences which look like person names. For this it
uses a grammar of names: if the first capitalized word occurs in a list of first names and the
following word(s) are unknown capitalized words, then this string can be tagged as a PERSON.
Here we are no longer concerned that a person name can refer to a company. If the name
grammar had applied earlier in the process, it might erroneously have tagged “Adam Kluver”
as a PERSON instead of an ORGANIZATION. At this point in the chain of enamex processing,
that is not a problem anymore: “Adam Kluver” will by now already have been identified as
an ORGANIZATION by the sure-fire rules or during partial matching. If it hasn’t, then it is
likely to be the name of a person.

At this stage the system will also attempt to resolve conjunction problems in names of organ-
isations. For example, in “this was good news for China International Trust and Investment
Corp”, it is not clear whether the text is referring to one organisation or two. The system
checks if possible parts of the conjunctions were used in the text on their own and thus are
names of different organizations; if not, the system has no reason to assume that more than
one company is being talked about.

In a similar vein, the system resolves the attachment of sentence initial capitalized modifiers,
the problem alluded to above with the “Suspended Ceiling Contractors Ltd” example: if the
modifier was seen with the organization name elsewhere in the text, then the system has
good evidence that the modifier is part of the company name; if the modifier does not occur

Named Entity recognition in XML - 17- Mikheev et al



anywhere else in the text with the company name, it is assumed not to be part of the it.

At this stage known organizations and locations from the lists available to the system are
marked in the text, again without checking the context in which they occur.

ENAMEX: 4. Partial Match 2

At this point, the system has exhausted its resources (name grammar, list of locations,
etc). The system then performs another partial match to annotate names like “White”
when “James White” had already been recognised as a person, and to annotate company
names like “Hughes” when “Hughes Communications Ltd.” had already been identified as
an organisation. As in Partial Match 1, this process of partial matching is again followed by
a probabilistic assignment supported by the maximum entropy model.

ENAMEX: 5. Title Assignment

Because titles of news wires are in capital letters, they provide little guidance for the recog-
nition of names. In the final stage of enamex processing, entities in the title are marked
up, by matching or partially matching the entities found in the text, and checking against a
maximum-entropy model trained on document titles. For example, in “GENERAL TRENDS
ANALYST PREDICTS LITTLE SPRING EXPLOSION” “GENERAL TRENDS” will be
tagged as an organization because it partially matches “General Trends Inc” elsewhere in the
text, and “LITTLE SPRING” will be tagged as a location because elsewhere in the text there
is supporting evidence for this hypothesis.

5 Conclusion

5.1 Performance

In the MUC competition, our system’s combined precision and recall score was 93.39%. This
was the highest score, better in a statistically significant way than the score of the next best
system. Scores varied from 93.39% to 69.67%. Further details on this can be found in [8].

The table in Figure 5 shows the progress of the performance of the system we fielded for the
MUC competition through the five stages.

As one would expect, the sure-fire rules give very high precision (around 96-98%), but very
low recall—in other words, they don’t find many enamex entities, but the ones they find are
correct. Subsequent phases of processing add gradually more and more enamex entities (recall
increases from around 40% to around 90%), but on occasion introduce errors (resulting in a
slight drop in precision). Our final score for ORGANISATION, PERSON and LOCATION is given in
the bottom line of Figure 5.
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Stage ORGANIZATION PERSON LOCATION
Sure-fire Rules R: 42 P:98 R:40 P:99 | R:36 P:96
Partial Match 1 R:75 P:98 R:80 P:99| R: 69 P:93
Relaxed Rules R:83 P:96 R:90 P:98| R:8  P:93
Partial Match 2 R:8 P:96 R:93 P:97| R: 8 P:93
Title Assignment R:91 P:95 R:95 P:97| R:95 P:93

Figure 5: Scores obtained by the system through different stages of the analysis. R - recall P
- precision.

5.2 The system

One of the design features of the system which sets it apart from other Named Entity recog-
nition systems is that it is designed fully within the SGML paradigm: the system is composed
of several tools which are connected via a pipeline with data encoded in SGML or XML. This
allows the same tool to apply different strategies to different parts of the texts using different
resources. The tools do not convert from SGML into an internal format and back, but operate
at the SGML or XML level.

Our system does not rely heavily on lists or gazetteers but instead treats information from
such lists as “likely” and concentrates on finding contexts in which such likely expressions are
definite. In fact, the first phase of the enamex analysis uses virtually no lists but still achieves
substantial recall.

The system is document centred. This means that at each stage the system makes decisions
according to a confidence level that is specific to that processing stage, and draws on infor-
mation from other parts of the document. The system is hybrid, applying symbolic rules and
statistical partial matching techniques in an interleaved fashion.

5.3 Limitations

Unsurprisingly, the major problem for the system are single capitalized words, mentioned just
once or twice in the text and without suggestive contexts. In such a case the system cannot
apply contextual assignment, assignment by analogy or lexical lookup and fails to markup
the entity. As the results of the MUC competition show, this is a relatively rare occurrence.

6 Availability

A runtime version of the system described here is available for free at
http://www.ltg.ed.ac.uk/software/ne/.

We also have a set of tools which can be used to develop a Named Entity recognition system.
The tool suite is called LT TTT, and is available from
http://wuww.ltg.ed.ac.uk/software/ttt/.
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LT TTT consists of 1ttok, 1tstop and fsgmatch, a number of resource files for tokenisation,
for end-of-sentence disambiguation, and for the recognition of temporal expressions, and tools
for extending these resource grammars or for creating new ones.

It also has a visual interface which uses XSL style sheets to render the XML Named Entity
annotation in a form that is easier to inspect.

The part of speech tagger is available as a separate tool. See
http://www.ltg.ed.ac.uk/software/pos/.
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